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Abstract

Finite Deformation of Magnetoelastic Film

by

Matthew Ian Barham

Doctor of Philosophy in Engineering - Mechanical Engeineering

University of California, Berkeley

Professor David Steigmann, Chair

A nonlinear two-dimensional theory is developed for thin magnetoelastic films capable
of large deformations. This is derived directly from three-dimensional theory. Significant
simplifications emerge in the descent from three dimensions to two, permitting the self field
generated by the body to be computed a posteriori. The model is specialized to isotropic
elastomers with two material models. First weak magnetization is investigated leading to
a free energy where magnetization and deformation are un-coupled. The second closely
couples the magnetization and deformation. Numerical solutions are obtained to equilibrium
boundary-value problems in which the membrane is subjected to lateral pressure and an
applied magnetic field. An instability is inferred and investigated for the weak magnetization
material model.
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Chapter 1

Introduction

There is considerable current interest among mechanicians in nonlinear magnetoelasticity
[7], [8], [9], [10], and [20] . This is due to the development of highly deformable magnetizable
materials synthesized from elastomers infused with micro- or nano-scopic ferrous particles
[19]. Such materials are capable of large deformations induced by magnetic fields. This
property may be used to facilitate controlled pumping of fluid, for example, via remote
actuation.

In the present work we develop an approximate membrane theory for magnetizable ma-
terials of this kind and apply it to simulate the interplay between an applied magnetic field
modeled here as a remote dipole source and the pressure transmitted to the membrane by a
confined gas. Attention is confined here to equilibria.

Two material models will be examined. First a simple model of weak magnetization
will be derived, where the magnetization and mechanical stress are uncoupled. The second
material model examined was proposed by Kankanala & Triantafyllidis in [20] and [21],
where here the magnetization and mechanical stress are closely coupled.

Chapter 2 contains a summary of three-dimensional magnetoelasticity and its special-
ization to isotropic elastomers. A corresponding membrane model is derived in Chapter 3
directly from the equations of the three-dimensional theory. This approach is more system-
atic than alternative formulations based, for example, on thickness-wise integration of the
local three-dimensional balance laws (e.g. [12]). It incorporates a constraint requiring the
magnetization to remain tangential to the film as it deforms. This is motivated by the fact
such states are energetically optimal in thin films ([11] and [34]). Likewise, we impose the
constraint of bulk incompressibility, and thus exclude dilatational modes of deformation that
are energetically unfavorable in typical elastomers. However, unlike incompressibility, the
constraint on magnetization is not of the kind that requires a reactive Lagrange multiplier
in the relevant constitutive equation. Rather, it is a restriction involving the deformation,
allowing local membrane geometry to adjust in response to an applied field. Constraints on
the deformation of the Kirchhoff-Love type are typically imposed at the outset in theories of
thin magnetoelastic plates [41] . However, in general such constraints impede the attainment



CHAPTER 1. INTRODUCTION 2

of minima of the overall energy because, by confining attention to states of magnetization
that are optimal at any deformation, we effectively eliminate magnetization as an indepen-
dent variable. The bias induced by an applied field then yields deformations that violate
constraints of the Kirchhoff-Love type. Here, this is addressed via a director field which
emerges naturally from the underlying three-dimensional theory in the manner described in
[36] for the purely mechanical problem, without restricting the nature of the deformation in
thin bodies.

In Chapter 4 we define a finite-difference method to discretize the model spatially and
discuss the solution of the resulting equations by the method of dynamic relaxation, in which
equilibria are obtained as long-time limits of solutions to an artificial dynamical system with
viscosity. This finite-difference method is then expanded to better handle circular films, by
the introduction of a ”butterfly” mesh.

In Chapter 5 we look at the the weak material model and solve for the equilibrium
deformation using a shooting method (where we further simplify the problem to axisymmetric
deformations), a finite element method and the finite-difference method discussed in Chapter
4. An instability is inferred from the deformation response and then further investigated
using a variational method.

The finite-difference method described in Chapter 4 is applied, in Chapter 6, to deter-
mine the deformation, magnetization and magnetic field generated by a thin film, using
the Kankanala & Triantafyllidis material model, in response to an applied magnetic field,
pre-stretch and pressure load.
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Chapter 2

3D Magnetoelasticity

This chapter consists of a summary of three-dimensional magnetoelasticity. Some of the
work in this chapter appears in a paper by Steigmann [34]. The summary is intended to
make the connection between the present work and the ”accepted” formulation in Kovetz
[23].

2.1 Basic Equations

We start with a non-polarized magnetic elastomeric body, this body occupies region κ in
the reference configuration that is in a three-dimensional Euclidean space E identified with
an inertial laboratory frame Σ. The reference configuration has an exterior unit normal (N)
to the surface of the body ∂κ. The bodies reference position is x. The current position is
determined from the reference position by:

y = χ(x) (2.1)

where χ is the deformation function. The body occupies region R in the current configuration
with an exterior unit normal (n) to surface of the body (∂R), see Figure 2.1. In the absence
of an electric field the stress T in the body at rest in the current configuration (R) is [23]

T = T̂ + Tb + (m · b)I−m⊗ b (2.2)

where

Tb = µ−1
0

[
b⊗ b− 1

2
(b · b)I

]
(2.3)

and
T̂ = ρ (φF) Ft (2.4)

m = −ρφb (2.5)
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Figure 2.1: General Deformation of a body.

where µ0(> 0) is the permeability of free space, ρ is the mass density in the current config-
uration, φ(F,b) is the free energy per unit mass, m is the material magnetization per unit
current volume, b is the magnetic induction, F = Grad (χ(x)) is the deformation gradient,

Grad is the gradient with respect to the reference position (e.g. Grad(a) = ∂(ai)
∂xj

ei⊗ ej) and

I is the three dimensional identity on the translation space E ′ of E .
Here and henceforth, bold subscripts identify derivatives with respect to a tensor or vector

(e.g. φb = ∂φ/∂b ). The superscript t is used to denote the transpose; the superscript −t to
denote the inverted transpose. All vectors are elements of E ′, and all tensors are mappings
from E ′ back to E ′. A dot (·) between variables refers to the standard Euclidean inner
product and the notation a ⊗ b is used to denote the tensor product of vectors defined by
the rule (a⊗ b)v = (b · v)a.

Maxwell’s equations in the absence of currents are [23]

divb = 0 in E , (2.6)

curlh̄ = 0 in E \ R̄ (2.7)

where h̄ is the spatial magnetic field vector, applying to electromagnetic fields in the absence
of currents, div is the divergence with respect to the current position (e.g. diva = ∂(ai)

∂yi
),

curl is the curl operator with respect to the current position (e.g. curl(a) = ∂
∂y
× a) and R̄

is the closure of R. The aether relation of relevance is [23]

h̄ = µ−1
0 b (2.8)
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In view of 2.3, 2.6, 2.8 and the identity

div

(
b⊗ b− 1

2
(b · b)I

)
= b (divb)− b× curlb (2.9)

it is seen that
div (Tb) = 0 in E \ R̄ (2.10)

This only holds outside of the body. Inside the body there are ”bound” currents associated
with magnetization.

In the absence of free currents the relevant Maxwell equation is

curlh = 0 in R (2.11)

where the associated free charge current potential (the magnetic field) is

h = µ−1
0 b−m. (2.12)

From 2.11 it follows that there exists ϕ(y) ∈ R where

h = −gradϕ in R (2.13)

where grad is the gradient with respect to the current position (e.g. grad(a) = ∂(a)
∂yi

ei) Since
there is no material magnetization outside the body 2.8 and 2.12 are equivalent outside the
body

h̄(y) = h(y) in E \ R̄ (2.14)

With this relation the conclusion is made that the magnetic field h(y) can be extended to
the space outside the body. The relation 2.13 can also be extended outside the body with a
continuous extension of ϕ, giving

h̄ = −gradϕ E \ R̄ (2.15)

From this relation it can be seen that 2.7 is identically satisfied. There must be an allowance
for a discontinuity in gradϕ to exist on ∂R since neither 2.7 nor 2.11 apply on the boundary.

The balance laws in the material that are relevant to solving a problem are 2.6 and 2.11
in addition to [23]:

divT = ρÿ in R (2.16)

which is the local form of Euler’s first postulate of equilibrium in the absence of distributed
body force. If we look at a sub-volume P with boundary ∂P equation 2.16 with the use of
the divergence theorem becomes ∫

∂P

tda =

∫
P

ρÿdv = 0 (2.17)
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where
t = Tn (2.18)

t is the traction and n is the external unit normal to ∂P . The relation between stress and
traction is due to Noll’s theorem [26] and the classical Cauchy theorem applied to 2.16. The
meaning of equilibrium here and in general for electrodynamics is taken to indicate that an
arbitrary region P is stationary with respect to Σ and that there is no dependence on time
in the electromagnetic field.

The divergence theorem is used to express 2.6 in the global form while Stokes’s theorem
is used to express 2.11 in the global form∫

∂P

b · nda = 0 (2.19)

and ∮
C

h · dy = 0 (2.20)

where C is an arbitrary simple closed circuit. If a field is discontinuous on the surface S
within the arbitrary region P the jump conditions are obtained by shrinking P onto S leading
to the jump conditions

[b] · n = 0 (2.21)

and
n× [h] = 0 (2.22)

where [·] = (·)+ − (·)− is the discontinuity at the surface of discontinuity S in the direction
n. Superscripts + and - refer to the limits of (·) at y ∈ S approached from P+ and P−

respectively. Also n is the normal to S in the direction from P− to P+.
If there is a discontinuity in P the local form of Euler’s first postulate 2.16 will not hold

and the jump conditions at the discontinuity surface S are obtained from the global form
2.17, leading to

[T]n = 0 (2.23)

Boundary conditions for the body R̄ are obtained by admitting a discontinuity at the bound-
ary with normal n. Applying 2.21 and 2.22 to the boundary ∂R leads to

bo · n = bi · n (2.24)

and
n× ho = n× hi (2.25)

where subscript o and i refer to boundary values of the field outside and inside the body
respectively. From 2.12 we arrive at

[h] = (n · [h])n = (n ·m)n, (2.26)
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with m being evaluated on the boundary ∂R. From 2.6, 2.12, 2.13 and 2.15 we arrive at

divh = −divm in R

= 0 in E\R̄. (2.27)

The magnetic field is the sum
h = ha + hs (2.28)

of an applied field ha, generated by remote sources, and the self field hs generated by the
magnetized body. In the present circumstances both satisfy the relevant Maxwell equation
without time derivatives; thus,

curlha = 0 (2.29)

in all of three-space and
curlhs = 0 (2.30)

in E\∂R. By the definition of the applied magnetic field we can regard it as the field that
would exist if the body were not present and that the body has no influence on this part of
the magnetic field. Thus the jump in the applied field at the boundary ∂R is

[ha] = 0 on ∂R, (2.31)

and the applied magnetic field satisfies Maxwells equation 2.6

divha = 0 in E , (2.32)

Thus with the use of equation 2.26 the self field and the magnetization are subject to the
jump condition

[hs] = (n ·m)n on ∂R, (2.33)

and to Maxwell’s equation 2.27

divhs = −divm in R

= 0 in E\R̄. (2.34)

The field ha is assumed to be assigned as a function that is continuously differentiable
everywhere in E except at a finite number of singularities in E\R̄.

In Chapters 5 and 6 the applied magnetic field will be generated by a dipole source

ha(y) = D
3(a · k)a − k

`3
, (2.35)

where the (signed) constant D is the dipole strength having units of amps×meters2 (Am2),
` is the distance from the source to the point with position y in three-space, and a is the
radial unit vector from the source to the considered point. Thus,

`a = y − yd, (2.36)
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in which |a| = 1, is position measured from the source, located at yd and |·| is the induced
norm. This has an isolated singularity at the source. To compute the gradient of the applied
field for use later we proceed from the fact that dha = (gradha)dy, where dy = (d`)a+`da.
Using a· da = 0 we obtain

d` = a · dy and `da =Πdy, (2.37)

where
Π= I− a⊗ a (2.38)

is the projection onto the plane orthogonal to a at position y. These are used in the expression

dha = 3D
{
`−3 [(a · k)da+ (k· da)a]−

[
3`−1(a · k)a− k

]
d`
}

(2.39)

to deduce that

gradha = 3D`−4 {[(a · k)I + a⊗ k]Π−[3(a · k)a− k]⊗ a} . (2.40)

This result is confirmed by verifying that gradha = (gradha)
t, which is equivalent to

Maxwell’s equation 2.6.
From equation 2.11 a potential ϕ is defined where

h = −gradϕ. (2.41)

This potential can also be broken into two parts,

ϕ = ϕa + ϕs (2.42)

The first ϕs, which is the potential of the magnetic field produced by the body

hs = −gradϕs. (2.43)

From equations 2.33 and 2.34

[gradϕs] = −(n ·m)n on ∂R (2.44)

and

div(grad(ϕs) = −divm in R

= 0 in E\R̄. (2.45)

The unique solution of ϕs satisfying ϕs ' |y|−1 as |y| → ∞ is [18]

4πϕs(y) =

∫
∂R

m(ȳ) · n(ȳ)

|y − ȳ|
da(ȳ)−

∫
R

divm(ȳ)

|y − ȳ|
dv(ȳ) for y /∈ ∂R. (2.46)

The second ϕa is the potential of the applied magnetic field ha = gradϕa.
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From the separation of magnetic field (equation 2.28) we conclude that

ha = µ−1
0 ba, (2.47)

with the total magnetic induction
b = ba + bs (2.48)

where bs is the magnetic induction induced by the body that satisfies 2.12

µ−1
0 bs = m + hs in R (2.49)

and
µ−1

0 bs = hs in E \ R̄ (2.50)

The jump condition on ∂R gives

(bs)o · n = (bs)i · n on ∂R, (2.51)

with bs decaying as y gets large in the form |bs| ' |y|−2 as |y| → ∞
The jump condition 2.22 can be expressed as

ta + (Tb)o n = Tin (2.52)

where ta is the traction applied to the body on the boundary ∂R, (Tb)o is the stress caused
by the magnetic field outside the body and Ti is the total material stress on the boundary
as approached from the inside of the body. We assume that ta can be applied independently
of the field external to the body. ta may also be regarded as the reaction stress applied on
the outside of ∂R if the position is prescribed on the boundary.

Euler’s second postulate of equilibrium is [23]:∫
∂R

y × tda =

∫
R

y × ρÿdv, (2.53)

and this implies symmetry of T when ever 2.17 is satisfied

Tt = T, (2.54)

this imposes a constraint on the free energy.

2.2 Legendre Transformation

The free energy per unit mass φ(F,b) as a function of F and b can be expressed as a
function of other variables. It is also possible to have a free energy per unit mass in terms
of m,h, or µ instead of b, where µ is the material magnetization per unit mass defined by
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m = ρµ. We will show the relation between the different free energy functions and their
derivatives. From equation 2.12, the relation between the constitutive equations can be
established as

b = b̂ (F,h) = µ0 (h + m̂ (F,h)) (2.55)

The first Legendre transformation is [23]

ρψ (F,h) = ρφ (F,b) +
1

2
µ0m ·m, (2.56)

with m and b give by constitutive equations in terms of F and h. Consider a parameterized
path Γ = F(u),h(u). Take derivatives of 2.56 with respect to u giving

ρψ̇ = ρ̇ (φ− ψ) + ρφ̇+ µ0m · ṁ, (2.57)

where (·). = ∂(·)/∂u. Using the identity ρ̇ = −ρF−t · Ḟ with the inner product of 2nd order
tensors A ·B = trace(ABt), 2.5 and 2.57 become(

ρφF − ρψF +
1

2
µ0(m ·m)F−t

)
Ḟ− (ρψh + µ0m) ḣ = 0. (2.58)

Since Ḟ and ḣ are independent of each other in the above equation the first and second term
must equal zero independently yielding

ρφF = ρψF +
1

2
µ0(m ·m)F−t (2.59)

and
ρψh = −µ0m (2.60)

The stress 2.2 must be cast in terms of ψ using equations 2.4, 2.12 and 2.60

T = ρ(ψF)Ft + Th + µ0h⊗m (2.61)

where

Th = µ0

[
h⊗ h− 1

2
(h · h)I

]
(2.62)

From 2.3, 2.12 and 2.62 it is seen that

Th = Tb in E \ R̄ (2.63)

Using 2.11 it is seen that
divTh = µ0h(divh). (2.64)

We will define a new stress that will be used later in the derivation of the weak form of the
equilibrium equation, namely

Tm = Th + µ0h⊗m (2.65)



CHAPTER 2. 3D MAGNETOELASTICITY 11

with 2.63 leading to
Tm = Tb in E \ R̄. (2.66)

Using equation 2.12 it is seen that

divTm = µ0(gradh)m. (2.67)

The second Legendre transformation is [23]

ξ̂ (F, µ) = ψ (F,h) +
1

2
µ0µ · h, (2.68)

In the same manner that 2.58 was derived, a relation between the derivatives of ξ̂ (F, µ) and
ψ (F,h)is derived leading to (

ξ̂F − ψF

)
Ḟ +

(
ξ̂µ + µ0h

)
µ̇ = 0. (2.69)

In a similar manner the first and second terms equal zero independently leading to

ξ̂F = ψF (2.70)

and
ξ̂µ = µ0h (2.71)

When separating the magnetic field as in 2.28 and using 2.43 the magnetization and
magnetic field are related constitutively by

ξ̂µ = µ0h =µ0(ha − gradϕs). (2.72)

With the following relation the free energy per unit mass ξ(F,m) as a function of F and
m can easily be obtained.

ξ̂(F, µ) = ξ̂(F, ρ−1m) = ξ(F,m) (2.73)

The derivatives are related by
ξ̂µ = ρξm (2.74)

and
ξ̂F = ξF (2.75)

If the idealization is made that the material is incompressible as is done for highly elastic
materials 2.70 becomes

ξ̂F = ψF + qF−t (2.76)

where q is a constraint pressure associated with incompressibility to be determined when
solving the system of equations with the addition of the equation restricting the density in
the manner

ρ(χ(x,t),t) = ρκ(x); equivalently, J = 1, where J = det F. (2.77)
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where ρκ is the mass density of the reference configuration. The constraint pressure if the
material is incompressible also appears in the F-derivative of φ and ψ multiplied by F−t,
and the term 1

2
µ0(m ·m) can be absorbed into q, leading to

φF = ψF + qF−t (2.78)

The constraint pressure term q also appears in the stress which needs to be added to 2.2 and
2.61 multiplied by I. The constraint pressures are subject to 2.16 and 2.52.

The total stress T for incompressible material is

T = ρ(ξF)Ft + µ0

(
h⊗ h− 1

2
|h|2 I

)
+ µ0h⊗m− qI. (2.79)

2.3 Energy Identity and Weak Forms

Before deriving the weak form of the balance equation we will look at the equation for
the applied tractions on the boundary of the body 2.52 in light of derivations above. Using
equations 2.61, 2.65 and 2.66, 2.52 can be expressed as

ta = ρ(ψF)Ftn− [Tm]n. (2.80)

Using 2.10 and 2.62 in 2.65 multiplied by the normal gives

µ−1
0 (Tm)n = µ−1

0 (b · n)h− 1

2
(h · h)n, (2.81)

Looking at the jump condition of the equation above and using 2.24 gives

µ−1
0 [Tm]n = µ−1

0 (bo · n)[h]− 1

2
(ho · ho − hi · hi)n, (2.82)

From 2.25 it is seen that

ho · ho − hi · hi = (n · hi)2 − (n · ho)2, (2.83)

with the reduction based on 2.10 and 2.26 yielding

ho · ho − hi · hi = (n ·m)2 − 2µ−1
0 (n · ho)(n ·m), (2.84)

Using the above and 2.26 in 2.82 we arrive at

[Tm]n =
1

2
µ−1

0 (m · n)2n, (2.85)

and then 2.80 becomes

ρ(ψF)Ftn = ta +
1

2
µ−1

0 (m · n)2n on ∂R. (2.86)
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To obtain the weak form of the balance law in terms of the energy identity we form the
inner product of 2.16 with ẏ, where y = χ(x, u), for x ∈ κ, is a parameterized deformation
field with u = 0 corresponding to an equilibrium state. Also, (·). = ∂(·)/∂u at a fixed x,
evaluated at u = 0. With the use of 2.61 and 2.65 and integrating over the body yields∫

R

ρψF · Ḟdv =

∫
R

div{(ρψFFt)tẏ}dv +

∫
R

ẏ · (divTm − ρÿ)dv, (2.87)

where
Ḟ = Gradẏ (2.88)

The above applies in the case of incompressibility provided

F−t ·Gradẏ = 0, (2.89)

with a constant pressure multiplied by F−t subtracted from ρψF in the first integral and the
use of the divergence theorem with 2.86 in the second integral of 2.87. Substitution of 2.67
into the third integral yields the weak form∫
R

(ρψF−qF−t)·Ḟdv =

∫
∂R

ta ·ẏda+
1

2
µ−1

0

∫
∂R

(m·n)2ẏda+µ0

∫
R

ẏ·(gradh)mdv−
∫
R

ρẏ·ÿdv.

(2.90)
The weak form based on the energy potential in the form ξ(F,m) is found by plugging

equation 2.70 into 2.90∫
R

(ρξF−qF−t)·Ḟdv =

∫
∂R

ta ·ẏda+
1

2
µ−1

0

∫
∂R

(m·n)2ẏda+µ0

∫
R

ẏ·(gradh)mdv−
∫
R

ρẏ·ÿdv.

(2.91)

2.4 Strong Form

The strong or local form of the equation may be read off almost by inspection of equation
2.91. Thus

div[ρ(ξF)Ft − qI] + µ0(gradh)m = ρÿ in R. (2.92)

While compatible boundary data entail, for example, the satisfaction of

ρ(ξF)Ftn− qn = ta +
1

2
µ0(m · n)2n on ∂Rt, (2.93)

with y assigned on the complement ∂R \ ∂Rt.
Our further considerations require equations involving a referential divergence operator.

For 2.92, this is easily achieved via the Piola transformation

P = [ρ(ξF)Ft − qI]F∗ = WF − qF∗, (2.94)
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where
W (F,m) = ρκξ (2.95)

is the referential strain-energy density, and

F∗ = JF−t (2.96)

is the cofactor of the deformation gradient. Thus,

Jdiv[ρ(ξF)Ft − qI] = DivP, (2.97)

where Div is the referential divergence based on x; therefore, 2.92 is equivalent to

DivP + µ0(gradh)m = ρÿ (2.98)

in which J = 1 has been imposed. Further, we find the referential form of the boundary
condition 2.93 to be

PN = pa + 1
2
µ0(m · n)2F∗N on ∂κt, (2.99)

where ∂Rt = χ(∂κt), having used Nanson’s formula

αn = F∗N, (2.100)

where α = |F∗N| is the local areal dilation of ∂κt. Here,

pa = αta (2.101)

is the applied traction measured per unit area of ∂κt.
With the use of equations 2.72, 2.74 and 2.95 we see that the magnetization and magnetic

field are related constitutively by [34]

Wm = µ0h =µ0(ha − gradϕs). (2.102)

Thus, if the constitutive function W (F, m) is known, equations 2.43, 2.46, 2.98, 2.99 and
2.102 yield a coupled integro-differential system to be solved for the deformation and mag-
netization.

This presents considerable analytical and numerical challenges [11]. In Chapter 5 these
are avoided by considering the limit of a weakly magnetized body in the presence of a strong
applied field. In this limit the self field may be generated from 2.46 a posteriori, and plays
only a passive role in the analysis. Alternatively, a direct simulation of the field may be
based on a discretization of Maxwell’s equations in the space surrounding the body [7] and
[5].

In Chapter 6 we use a result derived in [11] for thin films to show that the tractability
of the formulation adopted in [2] is retained when the magnetization and applied fields are
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comparable in magnitude. This yields a conventional differential-algebraic system to be
solved on a reference surface associated with the thin film.

To facilitate subsequent analysis, we use a pull-back M of m defined by∫
s

m · nda =

∫
S

M ·NdA, (2.103)

in which S ⊂ κ is an arbitrary orientable surface and s = χ(S, t) ⊂ R is its image in the
current configuration. Nanson’s formula then furnishes

M = JF−1m. (2.104)

In particular, this yields the convenient connections

αm · n = M ·N and Jdivm = DivM, (2.105)

which enable us to use, in place 2.99 and 2.46 respectively, the equivalent expressions

PN = pa + 1
2
µ0α

−2(M ·N)2F∗N on ∂κt, (2.106)

and

4πϕs(y, t) =

∫
∂κ

M(x, t) ·N(x)

|y − χ(x, t)|
dA(x)−

∫
κ

DivM(x, t)

|y − χ(x, t)|
dV (x), for x /∈ ∂κ, (2.107)

in which the role of time has been made explicit and incompressibility has been imposed.

2.5 Stability and Strong Ellipticity

A magneto-mechanical energy balance may be derived from 2.33, 2.34, 2.98, and 2.99.
Thus [34] and [18],

d
dt

{
K +

∫
R

ρξdv +M − µ0

∫
R

ha ·mdv

}
=

∫
∂Rt

ta · ẏda, (2.108)

where

K = 1
2

∫
R

ρ |ẏ|2 dv (2.109)

is the conventional kinetic energy and [6], [7], and [34]

M = −1
2
µ0

∫
R

hs ·mdv (2.110)
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is the magnetostatic energy of the self field. In this work we consider conservative applied
tractions for which ∫

∂Rt

ta · ẏda = d
dt
L, (2.111)

where L is a suitable load potential. We then have the conservation law

d
dt
E ′ = 0, where E ′ = K + E (2.112)

is the total magneto-mechanical energy in which

E =

∫
R

ρξdv +M − µ0

∫
R

ha ·mdv − L (2.113)

is the magnetoelastic potential energy. We remark that our energy balance excludes certain
terms that are present in the balance discussed in [18] These vanish collectively when the
applied field is assigned as a stationary function of y, as assumed here; that is, as a function
which is independent of t in the spatial description [34]. Further, the results of [34] may be
used to show that the static specialization of 2.98, in which inertia is suppressed, furnishes
an Euler-Lagrange equation for E.

In this work we consider pressure acting on a part ∂Rt of the boundary formed by the
union of two surfaces, ∂R+

t and ∂R−t , having no points in common. Uniformly distributed
pressures, P+ and P− respectively, are acting on these surfaces. Let S be a fixed orientable
surface such that ∂S = C, the curve bounding ∂R−t . We choose S such that its closure, and
that of ∂R−t , intersect only in C, so that S ∪ ∂R−t encloses a well-defined volume V − ⊂ E .
In the applications of interest here, ∂R+

t and ∂R−t respectively are the ’upper’ and ’lower’
lateral surfaces of a thin sheet which, together with S, contains a compressible gas that
transmits a pressure P− to the lower surface. In Chapter 5 and 6 we identify S with the
reference plane for the sheet. The upper surface is subjected to a fixed pressure P+ supplied
by a large reservoir.

This loading is conservative, and the associated potential, modulo an unimportant con-
stant, is [34]

L =

∫ V −

P−(v)dv − P+(V + V −), (2.114)

where P−(V −) is the pressure-volume relation for the compressible gas and V is the vol-
ume of the body in configuration R. In the present context, the incompressibility of the
magnetoelastic material allows us to suppress V on the right-hand side. Further,

V − = −1
3

∫
∂κ−t

y · F∗NdA, (2.115)

where ∂κ−t is the pre-image of ∂R−t in the reference configuration with exterior unit normal
N [34].
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In a full thermodynamic treatment accounting for dissipative effects, the energy balance
2.112 is replaced by the imbalance dE ′/dt ≤ 0 [18], so that if a state with vanishing initial
velocity tends asymptotically to an equilibrium state, then the latter minimizes the potential
energy E [18] and [20]; i.e., it furnishes a value of the potential energy not exceeding that
supplied by the initial state. Because K is a positive-definite function of the velocity, it
follows that E ′ delivers a Lyapunov function for the dynamical system provided that the
potential energy is strictly minimized at the equilibrium state. The considered equilibrium
state is then stable. Without further qualification, this claim applies rigorously only to finite-
dimensional systems [22]. Thus, we apply it only to the system that has been discretized
for the purpose of numerical analysis. This is the basis of a dynamic relaxation method for
computing equilibria (Section 5.4 and Chapter 6).

In particular, then, an asymptotically stable equilibrium state minimizes the potential
energy. In the purely mechanical setting, it is well known that a minimizing deformation
necessarily satisfies the (local) strong-ellipticity inequality pointwise (see, for example, [28]).
In the present setting this is replaced by the magnetoelastic strong-ellipticity inequalities
[20]

a ·A(b)a > 0 and c · (Wmm)c > 0, (2.116)

where A(b) is the acoustic tensor defined by

a ·A(b)a = a⊗ b · {WFF −WFm(Wmm)−1WmF}[a⊗ b]. (2.117)

These inequalities apply for all non-zero vectors a,b, c, with a and b subject to the restriction

a · F∗b = 0 (2.118)

associated with incompressibility. The second inequality implies that Wmm is invertible, as
required by the first inequality. In terms of Cartesian components, inequalities (2.116)1,2 are

Aij(b)aiaj > 0 and (∂2W/∂mi∂mj)cicj > 0, (2.119)

where

Aij(b) = {∂2W/∂FiA∂FjB − (∂2W/∂FiA∂mk)(Wmm)−1
kl (∂2W/∂ml∂FjB)}bAbB. (2.120)

They furnish pointwise restrictions on energy-minimizing states of deformation and magne-
tization jointly, which in turn play a central role in reducing the three-dimensional theory
to a two-dimensional membrane model (Chapter 3).

2.6 Reduced Constitutive Equations and Isotropic Ma-

terials

The restriction imposed on the stress T (equation 2.79) by equation 2.54 restricts the
way in which W can depend on its arguments. This requires:

(WF)Ft +Wm ⊗m is symmetric, (2.121)
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which is found, following [2], to be equivalent to the requirement:

W (F,m) =W (QF,Qm) for all rotations Q, (2.122)

and this in turn is satisfied if and only if [7]

W (F,m) = W̄ (C, M̄) (2.123)

for some function W̄ , where

C = FtF and M̄ = F
t
m. (2.124)

The latter is related to the pull-back M by (cf. 2.104)

JM̄ = CM, (2.125)

and so W may be written as a (different) function of C and M, if desired. We make use of
this function in Chapter 3.

We assume the material to be isotropic, with a center of symmetry, relative to the refer-
ence configuration κ. Then [2],

W̄ (C, M̄) = W̄ (RtCR,RtM̄) for all orthogonal R. (2.126)

For R = −I this yields W̄ (C, M̄) = W̄ (C,−M̄), which is satisfied if and only if [9] W̄ (C, M̄) =
Ŵ (C, M̄⊗ M̄) for some function Ŵ subject to the restriction

Ŵ (C, M̄⊗ M̄) = Ŵ (RtCR,Rt(M̄⊗ M̄)R) for all orthogonal R. (2.127)

For incompressible materials, standard representation theory [42] implies that Ŵ = U(I1, I2, I4, I5, I6)
for some function U, where

I1 = trC, I2 = 1
2
[I2

1−tr(C2)], I4 = C · M̄⊗M̄, I5 = C2·M̄⊗M̄, I6 = M̄ · M̄. (2.128)

Proceeding as in [34] we then obtain

WF = 2F(SymW̄C) + m⊗ W̄M̄ and Wm = FW̄M̄, (2.129)

with

SymW̄C = (U1 − I1U2)I + U2C + U4M̄⊗ M̄ + U5[C(M̄⊗ M̄) + (M̄⊗ M̄)C]

and W̄M̄ = 2(U4C + U5C
2 + U6I)M̄, (2.130)

where Uk = ∂U/∂Ik.
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Chapter 3

Membrane Approximation

3.1 Membrane Approximation

We consider a body whose reference configuration κ is a prismatic region generated by
the parallel translation of a simply-connected plane Ω with piecewise-smooth boundary curve
∂Ω. The closure of κ is Ω̄× [−h/2, h/2], where Ω̄ = Ω∪ ∂Ω and h is the (uniform) thickness.
Let l be another length scale such as the diameter of a hole in Ω or a typical spanwise
dimension. We assume that ε

.
= h/l � 1, and, in the theoretical development, adopt l as

the unit of length (l = 1). We derive a two-dimensional membrane model by estimating
the equations of the three-dimensional theory to leading order in ε. Further, we suppose the
deformation to be C2 and the magnetization to be C1 in the interior of the body, so that
the local equations of the foregoing theory apply almost everywhere.

With minor loss of generality we assume the dipole in 2.35 to be orthogonal to the plane
Ω, which is thus oriented by the unit vector k. The projection onto the plane is

1 = I− k⊗ k (3.1)

and generates the orthogonal decomposition

P = P1 + Pk⊗ k (3.2)

of the Piola transform 2.94. Let ς be a linear coordinate in the direction of k, and suppose
ς = 0 on Ω. Equation 2.98 is then equivalent to

Div‖(P1) + P′k + µ0(gradh)m = 0, (3.3)

where (·)′ = ∂(·)/∂ς and Div‖ is the (referential) two-dimensional divergence with respect
to position u on Ω, where

x = u + ςk (3.4)

see Figure 3.1. This holds at all points in the interior of the body and therefore at ς = 0 in
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Figure 3.1: Reference Membrane.

particular. Thus,
Div‖(P01) + P′0k + µ0(gradh)0m0 = 0, (3.5)

where the subscript 0 identifies the values of functions at ς = 0; i.e., on the plane Ω. For
example,

P0 = WF(F0,m0)− q0F
∗
0 and µ0h0 = Wm(F0,m0) (3.6)

in which [36]
F0 = f + d⊗ k, (3.7)

where
f = ∇r , (3.8)

r and d(u, t) are the restrictions to Ω of χ and χ′, respectively, and ∇ is the two-dimensional
gradient on Ω; i.e., the gradient with respect to u. The current position of the deformed
mid-surface is

r = χ(u, t) = χ(x0, t) = y0. (3.9)

We note that r(u, t) maps Ω to the deformed membrane surface ω = χ(Ω, t). Accordingly, f
maps Ω′, the translation space associated with the plane Ω, to Tω, the tangent plane to ω at
the material point u ∈ Ω.

To accommodate the constraint of bulk incompressibility we impose

1 = det F0 = F∗0k · F0k =αn · d, (3.10)

where 3.7 and Nanson’s formula 2.100 have been used in the final equality. Here, α is the
local areal dilation of Ω and n is the orientation of the surface onto which Ω is deformed;
i.e., the unit normal to Tω. The general solution is

d = α−1n + fe, (3.11)

where e ∈ Ω′ is arbitrary. Further, equations 2.100 and 3.7 yield

αn = fi1 × fi2, (3.12)
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where iα ∈ Ω′ are subject only to the requirement that {i1, i2,k} be a positively-oriented
orthonormal set. Thus F0 is determined by f and e, regarded as independent variables. The
associated Cauchy-Green deformation tensor, C0 = Ft

0F0, is

C0 = c + ce⊗ k + k⊗ ce + (α−2 + e · ce)k⊗ k, where c = f tf (3.13)

and α is obtained by evaluating the norm of 3.12, yielding

α =
√

det c. (3.14)

3.2 The Leading-Order Model

The foregoing equations, holding on Ω, are exact consequences of the three-dimensional
theory. Approximations arise in using them to represent material response in Ω× [−ε/2, ε/2].
Let P± be the interior limits of P as ς → ±ε/2, where the exterior unit normals are N± = ±k.
Their Taylor expansions yield

P+N+ + P−N− = εP′0k + o(ε) and P+N+ −P−N− = 2P0k + o(ε). (3.15)

On the left-hand sides we use 2.99 together with the estimates

(F∗N)± = ±(F∗)±k = ±F∗0k + (ε/2)(F∗)′0k + o(ε) (3.16)

and
α± = α0 ± (ε/2)α′0 + o(ε), (3.17)

where
α′0 = α−1

0 F∗0k · (F∗)′0k, (3.18)

which follows on differentiation of α = |F∗k| . After some algebra we obtain

P+N+ +P−N− = p+
a +p−a + εµ0α

−2
0 M0{[M ′

0− (α′0/α0)M0]F∗0k+ 1
2
M0(F∗)′0k}+ o(ε) (3.19)

and
P+N+ −P−N− = p+

a − p−a + µ0α
−2
0 M2

0 F∗0k +O(ε), (3.20)

where p±a are the applied tractions at the lateral surfaces and M = M · k. The role of the
latter suggests the decomposition

M = 1M +Mk, (3.21)

which yields
DivM = Div‖(1M) +M ′. (3.22)

It follows from 3.15 and 3.19 that 3.5 yields a well-defined differential equation in the
limit of small ε only if P′0k remains bounded. Further, 3.6 implies that the deformation
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gradient and magnetization are bounded on Ω only if P0 is bounded. From 3.19 and 3.20 it
is therefore necessary that

p+
a + p−a = εp + o(ε) and p+

a − p−a = 2q + o(1), (3.23)

where p and q are of order unity in magnitude. It follows that, to leading order in ε,

P′0k = p + µ0α
−2
0 M0{[M ′

0 − (α′0/α0)M0]F∗0k + 1
2
M0(F∗)′0k} and

P0k = q + 1
2
µ0α

−2
0 M2

0 F∗0k. (3.24)

3.3 Estimate of the Self Field

Before proceeding we obtain an estimate of the leading-order self-field potential 2.107.
An elementary calculation based on 3.21 and 3.22 gives

4πϕs(y, t) = ε

{∫
∂Ω

1M0 · ν
|y − r|

dS −
∫

Ω

[Div‖(1M0) +M ′
0]

|y − r|
dA

}
+

∫
∂κ+

M+

|y − χ+|
dA−

∫
∂κ−

M−

|y − χ−|
dA+ o(ε), (3.25)

where the superscripts ± identify the values of functions at the upper and lower lateral
surfaces ∂κ± = Ω × {±ε/2} and ν ∈ Ω′ is the unit normal exterior to Ω. This is valid
provided that y 6= r(u, t) for any u ∈ Ω̄. To estimate the associated integrals, we compute
|v|′ = |v|−1 v · v′, where v = y − χ(x,t) and the derivative is with respect to ς at fixed y.
Accordingly, v′ = −Fk, and 3.7 gives

|y − χ|′0 = −(y − r)

|y − r|
· d. (3.26)

For y 6= r this yields

1

|y − χ|±
=

1

|y − r|

{
1± ε

2

(y − r)

|y − r|2
· d
}

+ o(ε), (3.27)

which, when combined with

M± = M0 ± (ε/2)M ′
0 + o(ε), (3.28)

results in

4πϕs(y, t)/ε =

∫
∂Ω

1M0 · ν
|y − r|

dS +

∫
Ω

[
M0

|y − r|2
(y − r) · d−

Div‖(1M0)

|y − r|

]
dA+ o(ε)/ε, (3.29)
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provided that 3.27 is uniformly valid over the domain. This limitation effectively restricts the
use of 3.29 to points y whose distances from the membrane are of order unity compared to ε;
that is, to points in space whose minimum distances from the deforming membrane surface
are large compared to membrane thickness. Accordingly, it may not be used to describe the
self field in the interior of the material.

To characterize the magnetic state inside the film, we estimate 3.22 at an interior point
x̄ ∈ κ. For points x near x̄, the presumed differentiability of the deformation implies that
|ȳ − χ(x, t)| = O(|ξ|), where ξ = x̄− x and ȳ = χ(x̄, t). The self field is obtained by com-
puting the gradient of ϕs with respect to y and evaluating the result at ȳ; thus, for x̄ /∈ ∂κ,

4πhs(ȳ) =

∫
∂κ

(M ·N)v

|ȳ − χ(x)|2
dA−

∫
κ

(DivM)v

|ȳ − χ(x)|2
dV, where v = (ȳ − χ(x))/ |ȳ − χ(x)| ,

(3.30)
in which t has been suppressed. The singularity is of order |ξ|2 , which is integrable in
κ. Therefore the volume integral makes a contribution of order ε. The boundary integral
includes a contribution from the surface ∂Ω × (−ε/2, ε/2), on which |ȳ − χ(x)| is strictly
bounded away from zero for any ε. Accordingly, this too contributes at order ε, leaving

4πhs(ȳ) =

∫
∂κ+∪∂κ−

(M ·N)v

|ȳ − χ(x)|2
dA+O(ε), (3.31)

in which M ·N = ±M± on ∂κ±, respectively. Thus,∣∣∣∣∫
∂κ+∪∂κ−

(M ·N)v

|ȳ − χ(x)|2
dA

∣∣∣∣ ≤ ∫
∂κ+∪∂κ−

|M±|
|ȳ − χ(x)|2

dA ≤ max
∂κ+∪∂κ−

∣∣M±∣∣ ∫
∂κ+∪∂κ−

1

|ȳ − χ(x)|2
dA.

(3.32)
The integrand in the final integral is dominated by its asymptotic behavior near x̄; i.e., by
|ξ|−2. For small thickness, the integral may then be shown to be O(|ln ε|) in magnitude. In
view of 3.28, the upper bound remains finite in the limit only if maxΩ |M0| = 0, in which case
it is of order |ε ln ε| . This guarantees that |hs(ȳ)| is finite and vanishes with ε. In particular,
then,

hs vanishes on Ω, at leading order. (3.33)

The alternative (M0 6= 0) yields an upper bound of order |ln ε|, which allows the self field
to grow without bound as thickness tends to zero. In this case the magnetostatic energy,
and therefore the potential energy, may become unbounded. However, this alternative does
not require the self field to become unbounded, and so our analysis, while suggestive, is not
conclusive. In other words, we have only shown that the constraint:

M0 = 0 on Ω, (3.34)

is sufficient for 3.33 and for boundedness of the magnetostatic energy. Using 3.7 and 3.21,
we then derive

m0 ∈ Tω on ω, at every u ∈ Ω. (3.35)
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To explore this issue further, consider the part of the potential energy involving magne-
tization. This is (cf. 2.110, 2.111 and 2.113)

Emag =

∫
κ

[W − 1
2
(h + ha) ·m]dV (3.36)

in which y and F are fixed, and reduces to

Emag =

∫
κ

(W − ha ·m)dV (3.37)

if the self field is negligible; i.e., if 3.35 holds. Here the magnetization is obtained by solving
2.102 in which the self field is suppressed, so that Emag is controlled entirely by the deforma-
tion. This effectively eliminates the magnetization as an independent variable. In the work
of Gioia and James [11] on non-deforming films it is proved that minimizers of 3.36 furnish
energies that converge to 3.37 as film thickness tends to zero. It was also proved that optimal
states of magnetization necessarily satisfy 3.35 and that the residual self-field vanishes, in
accordance with 3.33 (see also [34]). Further, in [11] it is shown that there is no residual
magnetostatic equation to leading order; indeed, the solution 2.46 to 2.27 has already been
used in the course of obtaining 3.35 and therefore plays no further role. These results imply
that 3.33 and 3.35 characterize optimal states of magnetization in a sufficiently thin film, at
any fixed deformation. In particular, the magnetostatic energy is negligible at leading order.
The Euler equation for the deformation that emerges from this leading-order approximation
is given by 2.98 [34], but with gradh replaced by gradha. This follows from the fact that
the variational derivative of ha, identified by a superposed dot, is purely convective; i.e.,
ḣa = (gradha)ẏ, if the applied field is a stationary function of y. The claim then follows
from 2.29, which is equivalent to the symmetry of gradha. Strictly, these results are known
to be necessary only for optimal (energy-minimizing) states of magnetization and may not
apply to dynamical states. However, in this work we use dynamics solely to facilitate the
computation of equilibria. We do not model actual dynamic interactions. Accordingly, we re-
strict attention to states of magnetization that are energetically optimal at any deformation,
equilibrated or otherwise.

Equation 3.34 affords the important simplifications

P′0k = p and P0k = q. (3.38)

For points remote from the deforming film 3.29 is applicable and simplifies, by virtue of 3.34,
to

4πϕs(y, t)/ε =

∫
Ω

1M0 · ∇
(

1

|y − r|

)
dA+ o(ε)/ε, (3.39)

where ∇ is the two-dimensional gradient with respect to u ∈ Ω and Green’s theorem has
been used to combine terms. Proceeding as in the calculation leading to 3.29, we put
v(u, t) = y − r(u, t) and use 3.8 to derive

d(|v|−1) = − |v|−3 v · dv, where dv = −dr(u) = −f(du), (3.40)
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yielding

∇
(

1

|y − r|

)
= |y − r|−3 f t(y − r) (3.41)

and

4πϕs(y, t)/ε =

∫
Ω

fM0

|y − r|3
· (y − r)dA+ o(ε)/ε. (3.42)

A straightforward computation based on 2.43 generates the scaled self field in the surrounding
space:

4πhs(y, t)/ε =

∫
Ω

G(fM0)dA(u) + o(ε)/ε, where G = 3
|y−r|5 (y − r)⊗ (y − r)− 1

|y−r|3 I

(3.43)
in which r(u, t) is the membrane position field at time t. Thus, the leading-order model
generates the dominant part of the self field in the surrounding space (which is of order ε) a
posteriori.

3.4 Loading

Turning now to the loading, suppose the lateral surfaces are subjected to pressures P±.
The applied tractions are

p±a = ∓(P±)(F∗)±k, (3.44)

and we assume that
P± = εp± + o(ε), (3.45)

where p± are of order unity. In this case q = 0 and

p =α(∆p)n (3.46)

in 3.38, where ∆p = p− − p+ is the net lateral pressure across the membrane.
Invoking 3.33 and the foregoing thin-film approximations, we find that 3.5 reduces to

Div‖(P01) + α(∆p)n + µ0(gradha)0m0 = ρκ0r̈, (3.47)

to leading order, where (gradha)0 is evaluated using 2.36 and 2.40 with y replaced by r, and

P0 = WF(F0,m0)− q0F
−t
0 . (3.48)

This is augmented by the algebraic constraints 3.62 and 3.382. Using 3.9, 3.44, and 3.45 the
leading-order constraints are found to be

Wm(F0,m0) = µ0ha(r) and P0k = 0. (3.49)
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Together with 3.7, 3.11, 3.21, 3.34 and 3.48, these furnish a system for the determination of
r(u, t), e(u, t), M0(u, t)(= 1M0) and q0(u, t). In practice we solve the equation obtained by
multiplying 3.47 through by ε. This yields the equation of motion for the membrane, which
in turn furnishes the leading-order approximation for a thin sheet. Our preference for 2.92
over 2.17 is due the availability of an explicit formula for the gradient of the applied field (cf.
2.40). From 3.7 and 3.491 it is clear that the constraint 3.35 imposes a restriction, not only
on the magnetization, but also on the deformation and director fields r and e , and thus on
the the geometry of the film in the presence of an applied field. In particular, this allows the
orientation of the tangent plane to the membrane to adjust in response to the applied field.

The literature on magnetoelasticity in thin structures is typically based on an a priori
constraint of the Kirchoff-Love type (i.e., e = 0) on the director field (e.g. [41] ). However, in
Chapter 6 below we find that solutions deviate substantially from Kirchhoff-Love kinematics.
Because we have confined attention to states of magnetization that are optimal at any
deformation, and thereby eliminated magnetization as an independent variable, it follows by
relaxation of constraints by restrictions that the Kirchhoff-Love type impede the attainment
of minima of the overall potential energy. Indeed, the analysis of [2] indicates that the
Kirchhoff-Love constraint is generally incompatible with 3.35. Therefore the present model
is optimal relative to formulations in which such constraints are imposed at the outset.
Kirchhoff-Love kinematics are obtained if the effects of deformation and magnetization are
uncoupled in the expression for the strain-energy function, as in weakly magnetized materials
subjected to applied fields of sufficient intensity Chapter 5 [2].

Standard mixed traction/position problems consist in the specification of r and the trac-
tion

τ = P01ν (3.50)

on complementary parts of the boundary curve ∂Ω. Here τ is the value on ∂Ω of the exact
traction field acting on a part of the cylindrical generating surface of the body where tractions
are assigned. In this work we assume position to be prescribed on ∂Ω× [−ε/2, ε/2] and thus
assign r everywhere on ∂Ω.

3.5 Solvability of the Constraints

We demonstrate the solvability of the constraints 3.491,2 for M and e at a given defor-
mation r(u, t) of Ω. To ease the notation, here and henceforth the subscript 0 is suppressed
on the understanding that all fields discussed are the restrictions to Ω of three-dimensional
fields identified by the same symbol. We impose 3.34 at the outset, and thus find it more
convenient to work with a formulation based on the use of F and M, rather than F and
m, as independent variables. To this end we invoke bulk incompressibility and use 2.104 to
define the function

W̃ (F,M) = W (F,FM) for M ∈ Ω′. (3.51)
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Consider a one-parameter family of magnetizations M(u) ∈ Ω′. Using a superposed dot
to denote the derivative with respect to the parameter, we derive W̃M · Ṁ = Wm · FṀ at
fixed F, and therefore

[W̃M − Ft(Wm)] · Ṁ = 0 for all Ṁ ∈ Ω′, (3.52)

wherein W̃M ∈ Ω′. It follows that W̃M = 1Ft(Wm), where 1Ft = f t by virtue of 3.7; eq. 3.52
then implies that

W̃M = µ0f
tha(r). (3.53)

We regard this as an equation for M in which r, f and e (hence F) are assigned. To
investigate its solvability we compute another derivative, again at fixed F, obtaining

(W̃MM)Ṁ = f t(Wmm)ṁ = [f t(Wmm)f ]Ṁ. (3.54)

Therefore,
Ṁ · (W̃MM)Ṁ = fṀ · (Wmm)fṀ, (3.55)

which is positive for all non-zero Ṁ by virtue of 2.1162. Accordingly, W̃MM is positive
definite and W̃ (F, ·) is strictly convex. Equation 3.53 therefore possesses a unique solution
M̂ which minimizes W̃ at fixed F. This in turn determines the magnetization m = fM̂,
which furnishes the unique solution to

Wm = µ0ha(r). (3.56)

Next, we fix f and define

G(e,m) = W (f + d(f , e)⊗ k,m), (3.57)

where d(f , e) is the function defined by 3.11, in which α and n are determined by f via
3.12 and 3.14. Consider one-parameter families e(u) and m(u). The former induces the
one-parameter family F(u) of deformation gradients with derivative Ḟ = f ė⊗ k (cf. 3.7 and
3.11). Accordingly,

Ġ = ė · f t(WF)k + ṁ ·Wm, yielding Ge = f t(WF)k and Gm = Wm. (3.58)

Using 3.48 and the invertibility of Ft, we find the constraint 3.492 to be equivalent to

Ge = 0 and q = d · (WF)k. (3.59)

To address the first of these equations, we keep f fixed and compute

(Ge)· = f t{WFF[f ė⊗ k] + (WFm)ṁ}k. (3.60)
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Here we regard m(u) as the magnetization induced by e(u) via 3.56; that is, we use the unique
solution M = M̂(e) to 3.53 , associated with fixed r and f , to generate m(u) = fM̂(e(u)).
This satisfies 3.56 identically for all e(u) with u in some open interval. It follows that

ṁ = −(Wmm)−1(WmF)(f ė⊗ k), (3.61)

so that 3.60 reduces to
(Ge)· = f t{A(k)}(f ė), (3.62)

where A(·) is defined by 2.117.
With these results in hand, we define a function Γ(e) by

Γ(e) = G(e, fM̂(e))− µ0ha(r) · fM̂(e), (3.63)

at the same r and f . Inserting e(u) and evaluating the derivative, we find from 3.56 and
3.582 that

Γ̇ = Ge · ė (3.64)

for all u in some open interval. Then,

Γ̈ = (Ge)· · ė +Ge · ë. (3.65)

The domain of Γ(·) is the linear space Ω′, a convex set. If e1,2 belong to this domain,
then so do all points on the straight-line path

e(u) = ue2 + (1− u)e1; u ∈ (0, 1), (3.66)

on which 3.65 reduces to

Γ̈ = f ė · {A(k)}(f ė); ė = e2 − e1 6= 0. (3.67)

Setting a = f ė ∈ Tω and b = k, we find that 2.118 is satisfied because F∗k = αn is
orthogonal to Tω (cf. 3.12). Accordingly, the strong-ellipticity inequality 2.1161 is applicable
and implies that Γ̈ > 0. Integration of this result over (0, u) and then again over (0, 1) yields
the conclusion that Γ(e) is strictly convex; i.e.,

Γ(e2)− Γ(e1) > Γe(e1) · (e2 − e1) (3.68)

for all unequal pairs e1,2, wherein Γe = Ge by virtue of 3.64. Because strictly convex
functions possess unique stationary points, we conclude that 3.591 has a unique solution e∗. In
particular, this solution satisfies Γ(e) > Γ(e∗) for all e 6= e∗ and therefore furnishes the unique
minimizer of Γ(e). With this solution in hand, the unique magnetization field associated with

a given deformation r(u,t), and attendant gradient f , is given by m = fM̂(e
∗
).
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3.6 Lyapunov Functions

We have shown that the constraints 3.53 and 3.591 possess unique solutions e and M
at fixed r and f . To obtain them, use may be made of the Newton-Raphson method, for
example. The convexity conditions established in the foregoing ensure that the associated
iterates converge to a unique solution. Alternatively, we may embed 3.53 and 3.591 into the
artificial dynamical problems

mmM̈ + cmṀ + W̃M = µ0f
tha(r) and meë + ceė +Ge = 0, (3.69)

respectively, in which mm and cm are positive constants associated with magnetization and
me and ce are positive constants associated with the director and the superposed dots in the
two equations now identify derivatives with respect to time-like parameters τ1,2, respectively.
Equilibria of this system are precisely the unique solutions to 3.53 and 3.591. Further,
solutions to this system satisfy the energy balances

d
dτ1

(1
2
m
∣∣∣Ṁ∣∣∣2 + W̃ ) = −c

∣∣∣Ṁ∣∣∣2 and d
dτ2

(1
2
m |ė|2 + Γ) = −c |ė|2 . (3.70)

Standard theory for ordinary differential equations then ensures the existence of trajectories
of 3.691,2 for arbitrary initial data on which

L1 = 1
2
m
∣∣∣Ṁ∣∣∣2 + W̃ and L2 = 1

2
m |ė|2 + Γ (3.71)

are strictly decreasing. Our results concerning the minimizing properties of equilibria then
imply that L1,2 furnish Lyapunov functions for 3.691,2 respectively. All trajectories tend
asymptotically to solutions of the constraints 3.53 and 3.591, and these are stable equilibria
of the dynamical system [22]. The implementation of these results is discussed in Chapter
4.

Finally, we use the energy balance 2.112 to construct a Lyapunov function for the motion
r(u,t). To this end we observe, using 2.109, 2.110, 2.111, 2.113 and 2.114, that

K = εKM + o(ε), L = εLM + o(ε) and E = εEM + o(ε), (3.72)

where

KM = 1
2

∫
Ω

ρκ |ṙ|2 dA, LM =

∫ V

p−(v)dv − p+V

and EM =

∫
Ω

W (F,m)dA− µ0

∫
Ω

ha(r) ·mdA− LM , (3.73)

respectively, are the leading-order (membrane) approximations to the kinetic energy, pressure
potential, and potential energy, in which

V = 1
3

∫
Ω

αn · rdA (3.74)
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is the volume of the compressible gas contained by the membrane. From the leading-order
equation of motion 3.47, we obtain

K̇M =

∫
Ω

ṙ · [Div‖(P1) + α(∆p)n + µ0(gradha)m]dA. (3.75)

Using [34]

L̇M =

∫
Ω

α(∆p)n · ṙdA (3.76)

this is reduced to

K̇M = L̇M + µ0

∫
Ω

m · ḣadA+

∫
∂Ω

P1ν · ṙdS −
∫

Ω

P1 · ḟdA, (3.77)

where we have used ḣa = (gradha)ṙ for stationary applied fields, together with the symmetry
of gradha. In this work we assume r to be fixed on ∂Ω and accordingly suppress the integral
over ∂Ω. We now use 3.491 and combine the result with 3.733 to derive

d
dt

(KM + EM) =

∫
Ω

(WF · Ḟ−P1 · ḟ)dA. (3.78)

Using 3.48 with the constraint of bulk incompressibility in the form F−t · Ḟ = 0, together
with 3.2 and 3.7, we find that

WF · Ḟ = P · Ḟ = P1 · ḟ + Pk · ḋ (3.79)

and thereby reduce 3.78 to

d
dt

(KM + EM) =

∫
Ω

Pk · ḋdA, (3.80)

which vanishes by virtue of 3.49. Thus the leading-order model yields the conservation
law d

dt
(KM + EM) = 0, which is replaced, in the presence of dissipation, by the imbalance

d
dt

(KM + EM) ≤ 0. This observation suggests that a dissipative numerical scheme may be
based on a discretization of the artificial dynamical equation

Div‖(P1) + α(∆p)n + µ0(gradha)m = ρκr̈ + cṙ, (3.81)

where c is a suitable constant. It is straightforward to show that if this equation is used in
place of 3.47, then the leading-order energy balance is replaced by

d
dt

(KM + EM) = −c
∫

Ω

|ṙ|2 dA. (3.82)
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Our earlier observation that stable equilibria minimize E implies that EM is minimized,
to leading order in thickness. Indeed, it is easily verified that 3.56 and the static specializa-
tion of 3.47 furnish the Euler-Lagrange equations for EM . Consequently, KM + EM decays
on trajectories of 3.81, provided that c > 0, and achieves a strict minimum at a stable
equilibrium. It therefore yields a Lyapunov function for 3.81, whose equilibria coincide with
those of 3.47. This conclusion applies strictly only to a finite-dimensional projection of the
problem associated with a spatial discretization of the equations on Ω. It also presumes that
equilibria are minimizers of EM . However here we have only imposed necessary conditions
for a minimum of the energy. In particular, in the purely mechanical specialization of the
theory it is known that these conditions are insufficient to preclude compressive stresses in
equilibrium, which violate the Legendre-Hadamard necessary condition for minimizers of EM
[29]. In such circumstances the existence of minimizers may be restored by replacing the
membrane energy with a suitable relaxation [1], [13], [29], and [37], which excludes com-
pressive stress a priori via the mechanism of fine-scale wrinkling. This is the subject of
tension-field theory [35]. In this work we apply the theory to problems that do not exhibit
wrinkling and therefore do not require the explicit relaxation.

We emphasize the fact that 3.81 does not describe the actual dynamics of the membrane.
Rather, it is used here solely to expedite the computation of equilibria by embedding the
equilibrium problem into an artificial (finite-dimensional) dynamical system whose equilibria
coincide with those of the physical problem. As such, it furnishes a convenient regularization
of the equations. The strictly dissipative nature of this system is a feature shared by actual
equations of motion that account for dissipation through constitutive equations rather than
through modification of the equation of motion. However, 3.81 proves more convenient for
the purpose of generating equilibria because it allows the discrete equations associated with
the temporal evolution to be decoupled, affording a more efficient solution procedure. This
is discussed in the next section.
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Chapter 4

Finite Difference Method

In order to solve the equilibrium equations we use a finite difference based on Green’s
theorem for the Div‖ term in 3.81. Then the system of equations (3.69 and 3.81) is solved
using dynamic relaxation [40] where artificial mass, damping, and time is added to each equi-
librium equation. The associated system of equations is solved explicitly and the equilibrium
deformation is reached in the long time limit. This general method for solving Div‖(P1) = 0
is described in [14] and [32]. We will outline the method here with the addition of the non-
Div‖ forcing term in equation 3.81, and the use of dynamic relaxation to solve equations
3.69 and 3.81. We will also introduce a more complex grid that is more effective for circular
reference planes and modify the approach in [14] and [32] for the added complexity.

The reference plane Ω is covered by a grid (or grids) of cells of the kind in Figures
4.1 and 4.2. Nodes are represented with a pair of integers (i, j). It is noted that each
cell consists of four nodes and each node has three or four neighbors. The gray area in
Figure 4.1 and 4.2 corresponding to the associated zone formed by its nearest neighbors.
The center of each edge of each zone are represented with half integers and are referred to
as cell-centered points where the cell is represented by the dashed area in Figure 4.1 and
4.2. Some quantities are identified with nodes and are called node-centered variables (eg
deformed position, divergence of stress) and others are identified with zones called zone-
centered variables (e.g. stress, reference magnetization, and unknown portion of director).

If σα is a piecewise differentiable field in the plane and C is a closed contour with interior
D, Green’s theorem states that ∫

D

∂σα
∂xα

dA = eαβ

∮
C

σαdxβ (4.1)

where eαβ is the two-dimensional alternator defined by e12 = −e21 = 1, e11 = e21 = 0.
For nodes with four neighbors a one-point integration rule is applied to the left side of the
equation over the zone D, the gray region of Figure 4.1. Again the one-point integration rule
is applied, but this time to the right side of the equation to the four edges of the path C,
the path around D, see Figure 4.1. The path integral is then the sum of these four integrals
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Figure 4.1: Unit cell of finite difference grid node with four neighboring nodes.

which yields the difference formula for a node with four neighbors:

2Ai,j(σα,α)i,j = eαβ


σ
i+ 1

2
,j+ 1

2
α (xi,j+1

β − xi+1,j
β )+

σ
i− 1

2
,j+ 1

2
α (xi−1,j

β − xi,j+1
β )+

σ
i− 1

2
,j− 1

2
α (xi,j−1

β − xi−1,j
β )+

σ
i+ 1

2
,j− 1

2
α (xi+1,j

β − xi,j−1
β )

 (4.2)

where Ai,j is the area associated with the node (i, j) and is half the area of the gray quadri-
lateral in Figure 4.1:

Ai,j =
1

4

[
(xi−1,j

2 − xi+1,j
2 )(xi,j+1

1 − xi,j−1
1 )− (xi−1,j

1 − xi+1,j
1 )(xi,j+1

2 − xi,j−1
2 )

]
(4.3)

The new grid used for circular reference surfaces consists of combining two grids of the
above type. The first is the ”center” and the second is the ”outside”, see Figure 4.2. The four
nodes at the corner of the ”center” grid need special attention as they have three neighboring
nodes instead of four, as above. These nodes are circled in Figure 4.2, and for a close up see
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Figure 4.2: Butter fly grid, where the ”center” grid + ”edge” grid = full grid.

Figure 4.3: Close up of finite difference grid node with three neighboring nodes.
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Figure 4.3. The gray area in Figure 4.3 corresponds to the triangle associated with the corner
nodes three nearest neighbors and forms a zone. The center of each edge of the triangle are
represented with integers (A,B,C) and can be represented by the appropriate cell centered
nodes from the (i+ 1

2
,j+ 1

2
) indexing. In the same manner as equations 4.2 were derived the

equivalent equation for the corner nodes

2AN(σα,α)N = eαβ(σAα (xABβ − xACβ ) + σBα (xBCβ − xABβ ) + σCα (xACβ − xBCβ )) (4.4)

where AN is the area associated with the node (N) and is half the area of the gray triangle
in Figure 4.3:

AN =
1

2

∣∣(xAB1 − xAC1 )(xBC2 − xAB2 )− (xAB1 − xBC1 )(xAC2 − xAB2 )
∣∣ (4.5)

For these corner nodes equations 4.4 and 4.5 are used instead of 4.3 and 4.2 where the
node reference (i, j) is replaced by N to calculate the force due to the internal stress at these
corner nodes.

It is also noted that nodes that fall on the intersection of the ”center” grid and ”edge”
grid as well as common nodes from mapping of the ”edge” need zone centered values from
both the ”center” and ”edge” and different ”edge” quantities where the simple adding and
subtracting of 1 or 1

2
to indices i and j does not work. The equations associated with these

points are the same as the above mesh with care being taken on the numbering.
How fine the ”butterfly” mesh is can be defined by two quantities Nc and Nr. Nc rep-

resents the number of nodes in the x and y direction of the ”center” mesh, for Figure 4.2
Nc = 7. Nr represents the number of radial nodes of the ”edge”, for Figure 4.2 Nr = 3, this
is due to the fact that the inside nodes of the edge are the same as the outside of the center
and will be represented by the center numbering.

The magnetoelastic equilibrium equation is given by 3.81 in which the right-hand side is
suppressed. To facilitate its discretization, we exploit the fact that the term αn associated
with the pressure load may be expressed as a divergence on Ω [39]. Thus, n = nkik, where
i3 = k,

αnk = 1
2
eijkeαβfiαfjβ = Gkβ,β, (4.6)

and
Gkβ = 1

2
eijkeαβfiαrj (4.7)

in which eijk and eαβ respectively are the three- and two-dimensional unit alternators (e123 =
e12 = +1). This result is useful in the present circumstances because the net lateral pressure
on the membrane is uniformly distributed. Thus, the equilibrium equation is equivalent to
the system

Tkα,α = Rk, where Tkα = Pkα + (∆p)Gkα and Rk = −µ0(gradha)kifiαMα. (4.8)

Here Pkα = P· ik ⊗ iα are the components of P1, (gradha)ki = (∂h
(a)
k )/(∂yi) · ik ⊗ ii are

the components of the gradient of the applied field (note that these can be solved directly
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from 2.40), fkα = f · ik ⊗ iα = rk,α are the components of the surface deformation gradient,
rk = ik · r are the Cartesian coordinates of a material point on the deformed surface and
Mα = M · iα are the magnetization components. Tkα in turn, depend on the magnetization,
rk and the deformation gradient.

Equation 4.81 is of the form
σα,α = f, (4.9)

where σα = Tkα and f = Rk; k = 1, 2, 3. The σα, in turn, depend on the magnetization and
on the gradients of σ = rk (k = 1, 2, 3).

To solve 4.9 for all nodes (M = 1, 2, ..., NN−1, NN) we integrate over the region enclosed
by the dashed quadrilateral of Figure 4.1 or the dashed triangle of Figure 4.2 for nodes with
four or three neighbors, respectively where NN is the total number of nodes, obtaining

ΣM = FM , (4.10)

where
ΣM = 2AM(σα,α)M , (4.11)

and
FM = 2AMfM . (4.12)

In 4.11 the right-hand side is evaluated in terms of the zone-centered values of σα = Tkα for
k = 1, 2, 3 via 4.2 or 4.4. The latter are determined constitutively by corresponding zone-
centered values of magnetization together with the current position and the deformation
gradients. The current position is not stored at zone centered points but is calculated by
averaging those of its four nearest neighbors. The deformation gradient is obtained at zone
centered points by setting σα in equation 4.1 to the current position (yk) and applying the
same approximations discussed above in determining σα,α, resulting in:

2Ai+
1
2
,j+ 1

2 (fkα)i+
1
2
,j+ 1

2 = eαβ

(
(xi,j+1

β − xi+1,j
β )(yi+1,j+1

k − yi,jk )

−(xi+1,j+1
β − xi,jβ )(yi,j+1

k − yi+1,j
k )

)
(4.13)

where Ai+
1
2
,j+ 1

2 is the area associated with the zone, the dashed region of Figure 4.1, is:

Ai+
1
2
,j+ 1

2 =
1

2

[
(xi,j+1

2 − xi+1,j
2 )(xi+1,j+1

1 − xi,j1 )− (xi,j+1
1 − xi+1,j

1 )(xi+1,j+1
2 − xi,j2 )

]
(4.14)

The scheme is seen to require one degree less differentiability than that required by the local
differential equations. Discussions of the associated truncation errors are given by Hermann
and Bertholf [15] and Silling [33] .

To solve equation 4.10, we introduce a regularization based on the artificial dynamical
system (cf. 3.81)

ΣM,n = mM σ̈M,n + cM σ̇M,n + FM,n (4.15)
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where mM = 2AMρ is the nodal mass, cM = 2AMc is the nodal damping coefficient, n is the
time step, and superposed dots refer to derivatives with respect to (artificial) time. This is
not the discrete form of the actual dynamical equations. Rather, it is an artificial system
introduced solely to expedite the computation of equilibria. The basic method, known as
dynamic relaxation [40], is a powerful tool for generating equilibria in a wide variety of
nonlinear problems. It was developed for membrane theory in a purely mechanical setting
in [13], [1] and [37] and extended to coupled thermoelasticity in [39].

We observe that the matrix Gkβ associated with lateral pressure is evaluated at zone-
centered points (cf. 4.8 and 4.10). However, this involves the deformation rk (cf. 4.7),
a nodal variable. The required evaluation is based on the average of the deformations of
the adjacent nodes. Similarly, 4.8 requires nodal values of fkαMα, which are obtained by
averaging values at the four adjacent zone-centered points.

In the case of volume-dependent pressure loading it is necessary to evaluate the volume
enclosed by the deformed membrane and the plane Ω. This is obtained from 3.74 in which
αn · r = 1

2
eijkeαβfiαfjβrk. The domain is divided into zones - the shaded regions in Figure 1 -

and the integral over each is estimated as the zone-centered value of the integrand multiplied
by the shaded area, given by 4.14 . Similarly, the scaled self field at a given position y in
the surrounding space is obtained by using 3.43, in which the integral is replaced by the
sum of the integrals over the zones. Each of these is approximated by multiplying the value
of the integrand at the relevant zone-centered point by the shaded area. The integrand is
formed from zone-centered values of f and M and the averaged values of the nodal membrane
position r.

The time derivatives in 4.15 are approximated by the central differences

σ̇n = 1
2
(σ̇n+1/2 + σ̇n−1/2), σ̈n = 1

∆t
(σ̇n+1/2 − σ̇n−1/2), σ̇n−1/2 = 1

∆t
(σn − σn−1), (4.16)

where ∆t is the time increment and the node label (M) has been suppressed. Substitution
into 4.15 furnishes the explicit, decoupled system

(∆t−1 + c/2)mM σ̇M,n+1/2 = (∆t−1 − c/2)mM σ̇M,n−1/2 + ΣM,n − FM,n,

σM,n+1 = σM,n + ∆tσ̇M,n+1/2, (4.17)

which is used to advance the solution in time node-by-node.
The starting procedure is derived from the quiescent initial conditions

σM,0 = σ0(uMα ), σ̇M,0 = 0, (4.18)

where σ0(uα) is assigned. Thus, from 4.17 we obtain

(2/∆t)mM σ̇M,1/2 = ΣM,0 − FM,0, (4.19)

in which the right-hand side is determined by the function σ0. The solution is advanced to
the first tn such that

max
M

∣∣ΣM,n − FM,n
∣∣ < tol, (4.20)
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where tol is a suitable tolerance. We remark that because only long-time limits of solutions
are relevant, temporal accuracy is not an issue. Stability is addressed by using sufficiently
small time steps selected on the basis of successive trials based on a sequence of values of
∆t.

A similar temporal discretization is used to update the magnetization and director fields
M and e at zone-centered points. Thus from 3.69 we arrive at:

(∆τ−1
1 + cm/2)m

i+ 1
2
,j+ 1

2
m Ṁi+ 1

2
,j+ 1

2
,n+ 1

2 = (∆τ−1
1 − cm/2)m

i+ 1
2
,j+ 1

2
m Ṁi+ 1

2
,j+ 1

2
,n− 1

2

+(f i+
1
2
,j+ 1

2
,n)−1h

i+ 1
2
,j+ 1

2
,n

a − W̃ i+ 1
2
,j+ 1

2
,n

M )

(4.21)

Mi+ 1
2
,j+ 1

2
,n+1 = Mi+ 1

2
,j+ 1

2
,n + ∆τ1Ṁ

i+ 1
2
,j+ 1

2
,n+ 1

2 (4.22)

(∆τ−1
2 + ce/2)m

i+ 1
2
,j+ 1

2
e ėi+

1
2
,j+ 1

2
,n+ 1

2 = (∆τ−1
2 − ce/2)m

i+ 1
2
,j+ 1

2
e ėi+

1
2
,j+ 1

2
,n− 1

2

+G
i+ 1

2
,j+ 1

2
,n

e (4.23)

ei+
1
2
,j+ 1

2
,n+1 = ei+

1
2
,j+ 1

2
,n + ∆τ2ė

i+ 1
2
,j+ 1

2
,n+ 1

2 (4.24)

where
h
i+ 1

2
,j+ 1

2
,n

a = ha(y
i+ 1

2
,j+ 1

2
,n), (4.25)

W̃
i+ 1

2
,j+ 1

2
,n

M = W̃M(f i+
1
2
,j+ 1

2
,n,Mi+ 1

2
,j+ 1

2
,n), (4.26)

m
i+ 1

2
,j+ 1

2
m is the nodal artificial mass associated with the magnetic equation, c

i+ 1
2
,j+ 1

2
m =

cmm
i+ 1

2
,j+ 1

2
m is the artificial damping coefficient associated with the magnetic equation, ∆τ1

is the artificial time step associated with the magnetization, m
i+ 1

2
,j+ 1

2
e is the nodal artificial

mass associated with the director equation, c
i+ 1

2
,j+ 1

2
e = cem

i+ 1
2
,j+ 1

2
e is the artificial damping

coefficient associated with the director equation, ∆τ2 is the artificial time step associated
with the director.

Consistency with the derivation of the Lyapunov functions L1,2 of Section 3.6 requires
the use of a staggered scheme in which the predicted position field at time step n+ 1 is fixed
while integrating 3.70. We then start the integration of 3.702 using the value of e at step n as
the initial condition (with the initial value ė = 0). This calculation proceeds in increments
of the time-like variable τ2. We fix the predicted value of e at the subsequent step and
use this value to integrate 3.701 with respect to τ1, using the value of M generated by the
previous value of e as the initial condition (with initial value Ṁ = 0). This continues until
convergence is achieved, yielding the magnetization associated with the predicted value of e.
The integration with respect to τ2 then resumes and the cycle is repeated until convergence
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is achieved, yielding the values of e and M associated with the position field at step n + 1.
The process is repeated until the deformation field converges, yielding the final equilibrium
position, magnetization and director fields over all nodes and zone-centered points. However,
numerical experiments indicate that this computationally intensive double-staggered scheme
is not required in practice. Instead, we find that equilibrium states may be achieved by
treating all fields on an equal basis as far as temporal integration is concerned.

The magnetization at step n = 0 is set to zero. This is the unique solution to (112) if
the applied field vanishes. Accordingly, the applied field intensity is first set to a small value
and the equilibrium fields are obtained by the foregoing procedure. Successive equilibria are
then computed for a sequence of increasing field intensities, using the equilibria associated
with each member of the sequence as initial values for the next member.

In a similar manner as with the equation of motion we assume the time derivative of mag-
netization and unknown portion of the director to be zero (Ṁi+ 1

2
,j+ 1

2
,0 = 0 and ėi+

1
2
,j+ 1

2
,0 = 0)

thus arrive at the time derivative equations for the first time step:

(2/∆τ1)m
i+ 1

2
,j+ 1

2
m Ṁi+ 1

2
,j+ 1

2
, 1
2 = (f i+

1
2
,j+ 1

2
,n)−1h

i+ 1
2
,j+ 1
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,n
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2
,j+ 1

2
,n
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(2/∆τ2)m
i+ 1

2
,j+ 1

2
d ėi+

1
2
,j+ 1

2
, 1
2 = G

i+ 1
2
,j+ 1

2
,n

e (4.28)
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Chapter 5

Weakly Magnetized Material

In this chapter we will discuss the first material model we consider, of weak magnetization.
This material model will then be used to solve for the equilibrium deformation using a
shooting method in Section 5.1, finite element method in Section 5.3 and finite difference
method in Section 5.4. An instability is inferred from the shooting method and further
investigated with the use of a variational method (Section 5.2). The study of the weak
magnetized material and solving for equilibrium deformation has been published previously
in [2].

The limit of weak magnetization defined is defined by

m = δm̄, (5.1)

where |δ| � 1 and |m̄| and |gradm̄| are of order O(1) after suitable non-dimensionalization.
When referring to estimates of this kind we intend that they apply to suitably non-dimensionalized
variables. We also assume the applied magnetic field to be strong, in the sense that
|ha| = O(δ−1) and |gradha| = O(δ−1) in R. Our assumptions imply that |hs| = O(δ) in
R.

It follows from 3.56 and 5.1 that |Wm| = O(δ−1) whereas |m| = O(δ). This is associated
with behavior that is coercive in the sense that a large field is required to produce a small
magnetic response. In this regime it is consistent to use the estimate

W (F,m) =W (F,0) + m ·Wm(F,0) +
1

2
m⊗m ·Wmm(F,0) + o(|m|2). (5.2)

It is shown below that W (F,m) =W (F,−m) for materials that are isotropic with a center
of symmetry. For unsteady fields, this also follows from the requirement that W (F,m) be
invariant under time reversals [24] (p. 137). A necessary and sufficient condition is that
W (F,m) = W̄ (F, π), where π = m⊗m [34]. Straightforward calculation then yields

Wm = 2(W̄π)m, (5.3)
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implying that Wm(F,0) = 0 and

W (F,m) =W (F,0)+
1

2
m⊗m ·Wmm(F,0)+ o(|m|2). (5.4)

Accordingly, the relevant expression for the energy per unit reference volume is

W (F,m) ' Ŵ (F) +
1

2
m⊗m · A(F), (5.5)

where Ŵ (F) = W (F,0) is the conventional strain-energy function associated with the purely
mechanical theory and A(F) = Wmm(F,0). Given the paucity of empirical data, we assume,
both for simplicity and for purposes of illustration, that

A(F) =AI, (5.6)

where A is a fixed constant. This is shown below to be consistent with our assumption of
isotropy. Accordingly, the expression for the energy becomes

W (F,m) ' Ŵ (F)+
1

2
A |m|2 . (5.7)

From 3.56 and 5.7 we arrive at:
m =

µ0

A
ha (5.8)

If the relation between the magnetization and magnetic field is in the linear range (i.e. not
close to saturation), then 5.8 can be compared to

m = χ̄ha (5.9)

where χ̄ is the magnetic susceptibility per unit volume of the membrane [17]. This corre-
spondence establishes the connection:

A =
µ0

χ̄
(5.10)

and finally the constitutive relation 5.7 in terms of standard material properties:

W (F,m) ' Ŵ (F)+
µ0

2χ̄
|m|2 . (5.11)

We will use the Mooney-Rivlin form of the conventional strain-energy function:

Ŵ (F) = w∗(λ1, λ2, λ3) =
G

2

[
δ
(
λ2

1 + λ2
2 + λ2

3 − 3
)

+ (1− δ)
(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)]

(5.12)

where λi are the principal stretches, the positive square roots of the eigenvalues of the right
Cauchy-Green tensor (C = FtF) and δ ∈ (0, 1] is a fixed parameter that is fitted to material
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data and G is the (positive) ground-state shear modulus. The stretches are the coefficients
in the representation [25]

F =
3∑
i=1

λivi ⊗ ui (5.13)

where ui and vi are the principal vectors of FtF and FFt, respectively.
For this strain-energy function the necessity to solve for the magnetization using dynamic

relaxation can be eliminated and solved directly from the applied magnetic field using equa-
tion 5.9. By combining 3.582 and 3.591 we can derive an algebraic problem for the elimination
of e. Using the fact that the deformation and magnetization are uncoupled (WFm = 0) for
this strain-energy function and strong ellipticity of the three-dimensional strain-energy func-
tion defined by 5.12, it has been shown in [38] that the unique solution is given by e = 0. It
follows [38] that u3= ±k and u1,u2 ∈ Ω′. Further, from 3.10 and 3.11 we derive

d = λn, where λ = (λ1λ2)−1. (5.14)

It follows from Equations 3.582 and 3.591 that the constraint pressure is [38]

q = λ3
∂w∗

∂λ3

. (5.15)

Let
w(λ1, λ2) = w∗(λ1, λ2, λ3) with λ3 = (λ1λ2)−1. (5.16)

Then with 5.15 we have
∂w

∂λα
=
∂w∗

∂λα
− q

λα
. (5.17)

Moreover, we may proceed from 3.79, 5.13, 5.17, as in [24], to show that

f =
2∑

α=1

λαvα ⊗ uα (5.18)

P1 =
2∑

α=1

∂w

∂λα
vα ⊗ uα, (5.19)

where vα ∈ Tω(u).

5.1 Shooting Method

We consider axisymmetric deformations u 7→ r(u), where u = rer(θ) and

r(u) =u(r)er(θ) + z(r)k, (5.20)
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in which r ∈ [0, ra] is the radius from the axis of symmetry of a material point in the
reference configuration; θ ∈ [0, 2π) is its azimuthal angle; er(θ) = u/r is the radial unit
vector at azimuth θ; k is a fixed unit vector aligned with the symmetry axis; and u, z are
the radial and axial coordinates of the material point after deformation. This deformation
maps a plane circular disc to a surface of revolution.The associated deformation gradient is

f = [u′(r)er + z′(r)k]⊗ er + (u/r)eθ ⊗ eθ, (5.21)

where (·)′ = d(·)/dr and eθ = k× er = e′r(θ). The azimuthal and radial principal stretches
are

λ1 := λ = u(r)/r (5.22)

λ2 := µ =
√

(u′)2 + (z′)2, (5.23)

and the corresponding principal axes are

u1 = v1 = eθ (5.24)

and
u2 = −er, v2 = − cosφ(r)er + sinφ(r)k, (5.25)

where (see Fig. 1)
cosφ = u′/µ (5.26)

and
sinφ = −z′/µ. (5.27)

Using 5.19 with formulae developed in [25], it is straightforward to show that

Div‖(P1) = r−1[(wλv1)θ − (rwµv2)r], (5.28)

where Greek subscripts are used to denote partial derivatives. Thus,

Div‖(P1) = r−1{[wλ cosφ− (rwµ)′]v2 − [wλ sinφ+ rwµφ
′]n}, (5.29)

where
n = cosφk+ sinφer (5.30)

is the unit normal to the deformed surface and we have used v′2 = φ′n with

er = − cosφv2 + sinφn. (5.31)

On combining 5.9 and 3.81 we find the contribution of the magnetic field to the equilib-
rium equation to be

g := µ0(gradha)m = µ0χ̄(gradha)ha. (5.32)
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Figure 5.1: Geometry for shooting method

After some calculation based on 2.35 and 2.40 this reduces to

g =
H

`8
{(`a · k)k− [1 + 4(a · k)2](`a)}, (5.33)

where
H := 3D2µ0χ̄. (5.34)

This is to be evaluated on the deformed membrane midsurface, where y = r(u). Thus with
a dipole position yd = zdk,

`a =uer + (z − zd)k, `2 = u2 + (zd − z)2. (5.35)

Use of α = λµ in the pressure term in 3.81 and projection of the resulting equation onto
the unit tangent and normal to the deformed membrane furnish the coupled equilibrium
equations

wλ cosφ− (rwµ)′ + rv2 · g = 0 (5.36)

and
∆pλµ− rwµφ′ − wλ sinφ+ rn · g = 0, (5.37)

where, from 5.24, 5.25 and 5.33,

v2 · g =
H

`8

{
4(zd − z)

(zd − z)2

`2
sinφ+ [1 + 4

(zd − z)2

`2
]u cosφ

}
, (5.38)
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and

n · g =
H

`8

{
4(zd − z)

(zd − z)2

`2
cosφ− [1 + 4

(zd − z)2

`2
]u sinφ

}
. (5.39)

Equations 5.36 and 5.37 are further reduced by using the chain rule in 5.37. Thus,

µ′ = (rwµµ)−1[wλ cosφ− ŵµ − wλµ(µ cosφ− u/r) + rv2 · g] (5.40)

and
φ′ = (rwµ)−1[∆puµ− wλ sinφ+ rn · g] (5.41)

which, when combined with 5.24, 5.25, 5.26 and 5.27, completes a first-order system for the
determination of the equilibrium deformation.

The foregoing system is integrated subject to the boundary conditions

u(0) = 0, (5.42)

φ(0) = 0, (5.43)

λ(ra) = Λ, (5.44)

z(ra) = 0. (5.45)

where ra is the outer radius of the film and according to 5.24 the third of these entails the
assignment of radial position at the outer radius. Thus, we seek a continuously differentiable
deformation field meeting prescribed position data everywhere on the boundary.

The equations are solved by a shooting method based on standard Euler forward differenc-
ing with a suitable mesh spacing ∆r. The implementation of this method is straightforward
after resolution of the singularities in 5.40 and 5.41 at r = 0. To this end we assume that
µ(r) is differentiable and Taylor-expand rµ to obtain µ(∆r) = µ0 + (rµ′)0 to leading or-
der, where the subscript 0 is now used to identify function values at r = 0 and (rµ′)0 is
obtained from 5.40 in which cosφ0 = 1 by virtue of 5.43 . Equations 5.26 and 5.42 imply
that u(r) = rµ0 + o(r) near the origin and thus that λ(0) = µ(0) = µ0. Taken together these
furnish the leading-order estimate

µ(∆r)− µ0 = (wµµ)−1(wλ − wµ), (5.46)

where the right-hand side is evaluated at r = 0; this vanishes because of the isotropy of the
material and the equibiaxial stretch at the origin. Therefore µ(∆r) = µ0 and u(∆r) = µ0∆r
to the order of accuracy consistent with the Euler method. In the same way 5.41 and 5.43
are used in the Taylor expansion of rφ near the origin to obtain φ(∆r) = 0 to leading order.
These estimates are used to start the integration of the equations at r = ∆r. The shooting
variable µ0 is then adjusted as needed to satisfy 5.44. An interval-splitting method is used
to find the appropriate values of µ0, and yields a unique solution in all examples considered.
We do not impose 5.45 in the solution process; instead, we impose z(0) = 0 and compute z(r)
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by forward integrating 5.27. The value of z(r0) thus obtained is then used to shift the origin
of the z−axis to fulfill 5.45 a posteriori. This generates a one-parameter shooting problem
facilitating global analysis of existence and uniqueness. Consistent with this procedure, we
do not assign the height zd of the dipole source above the reference plane. Rather, we assign
its height zd0 above the center the deformed membrane, which is used as the origin of the
z−axis in the numerical procedure. This is the operative value of zd in equations 5.38 and
5.39. The actual height of the dipole source above the reference plane is then obtained by
computing zd = z0

d − z(r0). In the original statement of the problem zd is considered to be
assigned rather than computed. Nevertheless, the actual height zd thus obtained can be
correlated with a given value of z0

d. In this way comparisons can be made at fixed values of
actual height.

5.1.1 Results

Results for the shooting method are for films with the following properties and dimen-
sions: radius of the film (ra) of 0.317 cm film shear modulus (G) of 0.25 MPa; Mooney-Rivlin
parameter δ of 0.9 and magnetic susceptibility (χ̄) of 2.5; film thickness (h) of 70 µm; pressure
difference (∆p) of zero and a variety of dipole strengths(D) and dipole heights (zd).

The effect of varying the height of a dipole source of fixed intensity (D = 0.00269Am2)
above the base plane z = 0 is depicted in Figure 5.2 and 5.3. The hoop stretch at the
outer radius is Λ = 1, corresponding to the absence of pre-stretch. The Figure 5.2 shows
the shape of the deformed meridian of the membrane at various values of the dipole height
zd. As expected, the membrane is more severely deformed as the height is decreased (for
a monotonically decreasing sequence of height values), due to the ever closer proximity of
the source to the membrane material. Figure 5.3 shows how the variation of zd affects the
z-displacement at the center of the film, denoted by z0. This response exhibits a turning
point at around zd = zmin

d = .4220cm - the minimum source height possible in equilibrium
- followed thereafter by increasing values of zd (source farther from the base plane) as z0

continues to increase. In a purely mechanical analogue to this problem we would interpret
the field exerted on the membrane as a surrogate for a distributed mechanical force. Our
results would then indicate that a limit-point instability is encountered as the source height
approaches its minimum. It is thus appropriate to conclude that a limit-point instability
is encountered in the present problem, and thus that the decreasing branch of the response
curve (zd increasing), after zmin

d is encountered, corresponds to unstable equilibrium. We
conjecture that a full dynamic analysis of this problem would predict that, after the equi-
librium limit point is reached, the membrane is pulled into the dipole source dynamically.
This is confirmed in Chapter 6

Figures 5.4 and 5.5 illustrates the response of the membrane to dipoles of increasing
strength held at a fixed distance (zd = 0.5cm) above the base plane. Limit-point behavior
is again predicted, corresponding to a maximum dipole strength (Dmax ≈ 0.00566Am2)
for which equilibrium is possible, followed by an increase in pole displacement attending a
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Figure 5.2: Shooting method equilibrium axisymmetric deformation for D = 0.00269Am2,
for a range of dipole heights (zd)

Figure 5.3: Shooting method equilibrium z-displacment at the center of the film for D =
0.00269Am2, for a range of dipole heights (zd)
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decrease in dipole strength. The response is qualitatively similar to that produced by varying
the height of a source of a given intensity.

Figure 5.4: Shooting method equilibrium axisymmetric deformation for zd = 0.5cm, for a
range of dipole strengths (D)
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Figure 5.5: Shooting method equilibrium z-displacement at the center of the film, for zd =
0.5cm, for range of dipole strengths (D)
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5.2 Variational Method

The variational method is used to show the existence of the limit point instability postu-
lated by the shooting method described in Section 5.1. Note that this instability study has
previously been published and the key points are summarized here, see [3] for the compete
analysis. Assuming the membrane to be incompressible in bulk (λ1λ2λ3 = 1), the constitu-
tive relation between the applied magnetic field and magnetization for a weakly magnetized
material (5.8), material property relation of equation (5.10) and the Mooney-Rivlin model
for the conventional strain-energy (5.12) the potential energy 3.73 reduces to:

E =
hG

2

∫
Ω

[
δ(λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3) + (1− δ)(λ−2

1 + λ−2
2 + λ2

1λ
2
2 − 3)

]
da

−
hµ0χ̄

2

∫
Ω

ha · hada− h
∫ V

p−(v)dv − p+

(5.47)

where the dimensional thickness (h) is used in place of the dimensionless thickness (ε). The
first term is the elastic strain-energy (denoted Eλ), the second term is the magnetic energy
(Eh) and the third term is the pressure energy (EP ).

We again consider axisymmetric deformations, where the reference mid-surface position
is u = rer(θ) and the current mid-surface position be represented by equation 5.20. To
simplify the analysis while emphasizing the dominant features of the response, we make
the assumption that there is no deformation along the radial coordinate (u(r) = r). This
assumption is made since the deformation in the radial direction is small compared to the
axial deformation according to the analysis of the shooting method Section 5.1. Given
this assumption the elastic strain-energy in (5.47) , in terms of the dimensionless variables
ζ = z/ra and s = r/ra, reduces to

Eλ = πa2hG

∫ 1

0

[
(ζ ′)2 +

1

1 + (ζ ′)2
− 1

]
sds (5.48)

where ζ ′ = dζ/dr
We consider an applied magnetic field generated by the dipole source 2.35 with a dipole

position yd = zdk, invoking the assumption of vanishing radial deformation, and using the
dimensionless variables defined previously, the magnetic energy in equation 5.47 simplifies
to

Eh = −hπµ0χ̄D
2

a4

∫ 1

0

(
s2 + 4 [ζ(s)− ζd]2{
s2 + [ζ(s)− ζd]2

}4

)
sds, (5.49)

where ζd = zd/ra.
We assume that the pressure transmitted to the membrane is supplied by large reservoirs

above and below the film. Thus, deformations of the membrane result in a negligible change
in pressure with a volume change. Accordingly, the pressure energy is

EP = −P0∆V, (5.50)
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where P0 = p+ − p− is the assigned pressure difference across the membrane and ∆V is
the change in volume. Here, only the change of volume, rather than the volume itself,
has physical meaning, and we have taken this fact into account. Assuming axisymmetric
deformations and neglecting the radial displacement as above, we obtain

EP = −2πa3P0

∫ 1

0

[ζ(s)s] ds. (5.51)

An understanding of the qualitative features of the response may be gained most easily
from a single-degree-of-freedom model of the system. In contrast, the shooting method
described in Section 5.1 is concerned with the differential equations of equilibrium, i.e. with
an infinite-dimensional model. The latter does not lend itself easily to the analysis of stability.
Here we assume the deformed surface to be a one-parameter family of paraboloids defined
by

z = z0

[
1−

(
r

ra

)2
]

or ζ = ζ0

[
1− s2

]
(5.52)

where z0 is the (unknown) axial deformation at the center of the membrane and ζ0 = z0/a,
see Figure 5.6.

To assess the accuracy of the simple single-degree-of-freedom model, we consider a two-
parameter representation, again using the axial deformation at the center (z0) as a parameter.
In principle, this model should produce more accurate results than the one-parameter model.
The assumed mode of deformation is

z = z0

[
1−

(
r

ra

)2
]

+ c

[(
r

ra

)3

−
(
r

ra

)2
]

or ζ = ζ0

[
1− s2

]
+ b
[
s3 − s2

]
(5.53)

where b = c/ra, also unknown. The second term in equation 5.53 makes no contribution to
the displacement of the membrane at the center or the edge and incorporates the symmetry
condition of zero slope at the center, see Figure 5.6.

The variational approach used depends on the number of parameters that are varied. We
discuss the one- and two- parameter models in turn. In the one-parameter case the total
energy has been determined as a function of z0. The first variation of the energy is taken
with respect to z0. If the first variation vanishes, then the deformation is in equilibrium at
the associated value of the parameter. Thus, we require

∂E

∂ζ0

=
∂Eλ
∂ζ0

+
∂Eh
∂ζ0

+
∂EP
∂ζ0

= 0. (5.54)

The value of ζ0 that satisfies the above equation corresponds to an equilibrium state; this
relative deflection at equilibrium is denoted by ζe. To assess the stability of the equilibrium
state thus obtained, we compute the second variation:

∂2E

∂ζ2
0

=
∂2Eλ
∂ζ2

0

+
∂2Eh
∂ζ2

0

+
∂2EP
∂ζ2

0

. (5.55)
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Figure 5.6: Degrees of freedom used in the variational method.

evaluated at ζ0 = ζe. If the second variation is positive, then the equilibrium deformation is
judged stable. If negative, the equilibrium is unstable, and it is neutrally stable if the second
variation vanishes.

In the two-parameter model, the first variation of the energy is taken with respect to
ζ0 and b. Again, the deformation is equilibrated when the first variation vanishes. Such
deformations satisfy

∂E

∂ζ0

=
∂Eλ
∂ζ0

+
∂Eh
∂ζ0

+
∂EP
∂ζ0

= 0 and
∂E

∂b
=
∂Eλ
∂b

+
∂Eh
∂b

+
∂EP
∂b

= 0. (5.56)

We denote the associated parameter values by ζe and be. The considered equilibrium state
is stable if the matrix: 

∂2E

∂ζ2
0

∂2E

∂ζ0∂b

∂2E

∂bζ0

∂2E

∂b2

 , (5.57)

is positive definite at ζ0 = ζe and b = be . If this matrix is negative definite or indefinite, i.e.
if any eigenvalue is negative, then the deformation is unstable. If one eigenvalue vanishes
and the other is positive or vanishes, the deformation is (locally) neutrally stable. If both
eigenvalues are positive, the deformation is (locally) stable.

Equations 5.54 and 5.55 for the one-parameter model, and equations 5.56 and 5.57 for
the two-parameter model, despite their simplicity relative to the exact theory, are too com-
plicated to be solved analytically. Accordingly, we adopt a numerical solution to determine
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the elevation of the dipole above the undeformed membrane at which the equilibrium state
first becomes unstable; this height is denoted by ζi . For the one- parameter model, plots of
E, ∂E/∂ζ0 and ∂2E/∂ζ2

0 verses ζ0 were generated. For the two-parameter model, plots of
E, ∂E/∂ζ0 and ∂E/∂b over the ζ0 − b plane, and both eigenvalues of the second-variation
matrix, were obtained.

In both models it was observed that equilibrium deformations exist for a fixed ζd cor-
responding to a local minimum of the energy. A simple numerical scheme was used to
determine if a local minimum exists for a given value of ζd . In this scheme we first calculate
the energy over a range of ζ0 values for the one-parameter deformation and over a range of ζ0

and b for the two-parameter deformation. Then, we determine if there is a local minimum.
In the negative case, we increase the assumed value of ζd by a small amount, ∆ζd , until a
local minimum is obtained. Then, we decrease ∆ζd by a factor of 10 and use the last unstable
value of ζd, adding ∆ζd to obtain a new guess of ζd. This process is repeated until the desired
number of significant figures is attained and the last stable value of ζd is recorded as ζi. For
the one- parameter deformation, the values of ∂E/∂ζ0 and ∂2E/∂ζ2

0 at ζi are checked. For
the two-parameter deformation ∂E/∂ζ0, ∂E/∂b and both eigenvalues of the second-variation
matrix at ζi are checked.

The calculations were performed using the following parameter values: ra = 0.317cm,
h = 70µm, G = 0.25MPa, ρ = 1722kg/m−3, χ̄ = 2.5, µ0 = 4π × 10−7N/A2, δ = 0.9 and
P0 = 0, and for different values of the magnetic dipole strength, D. The results for the
one-parameter and two-parameter models are depicted in table 5.1 and compared with the
peak-response values inferred from the numerical solution of the differential equations of the
exact theory for the shooting method described in Section 5.1.

We observe that the inferred values ζi using the shooting method in Section 5.1 and
the values calculated from the present models are in quantitative agreement, with the two-
parameter deformation producing more accurate results, as expected. The per cent errors of
the present models relative to the exact solution are shown in table 5.1.

D(Am2) ζi Shooting ζi 1-par. 1-par % error ζi 2-par 2-par % error

2.69× 10−4 0.7868 0.6937 11.833 0.7616 1.494
2.69× 10−3 1.3310 1.2334 7.332 1.3111 3.203
2.69× 10−2 2.2540 2.1679 3.821 2.2427 0.503
2.69× 10−1 3.8664 3.7960 1.820 3.8628 0.094
2.69× 100 6.7533 6.6841 1.025 6.7477 0.082

Table 5.1: ζi values and per cent error for the one- and two-parameter representations.

Another interesting observation, confirming the conjecture offered in Section 5.1, is that
the instability is of the limit-point type. This becomes evident when ζd approaches the
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instability height. In the single-degree-of-freedom model, the equilibrium values of ζ0 corre-
sponding to a stable and to an unstable solution are seen to coalesce. When the instability
height is attained, the two solutions coincide. No equilibrium state, and hence no stable
equilibrium state, exists if the source height decreases below this value. This behavior is
depicted in Figure 5.7 for a particular value of dipole strength.

Figure 5.7: Energy (joules) versus the pole deformation ζ0 for various dipole heights above
the reference plane.

The limit-point nature of instability is not so readily apparent in the two-parameter
model. In order to discern it, we plot (in Figures 5.8-5.10) the three-dimensional energy
versus ζ0 and b together with a contour plot of the energy at three values of ζd. Stable
equilibria are marked with a dot. The first is at a stable value of ζd (ζd > ζi ), the second at
the incipient instability height ζd (ζd = ζi ) and the third at an unstable value of ζd (ζd < ζi).
In Figures 5.8-5.10 it may be seen that, as ζd decreases, the size of the cup where the local
minimum is located decreases in size, until ζd = ζi, when the cup is no longer present and
beyond that point no local minimum reappears.

The advantage of the energy criterion of elastic stability, extended herein to the mag-
netoelastic setting, is that the stability or instability of the deformation may be assessed
based on the considered equilibrium state alone. It is particularly amenable to use a finite-
dimensional model of the system, and this fact is exploited here to give an approximate
analysis of stability. As expected, the quantitative agreement between our predictions and
the limit points predicted using the exact differential equations of weakly magnetized ma-
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Figure 5.8: Energy (joules) versus ζ0 versus b for ζd = 2.33, and D = 0.02688Am2. Stable
equilibrium marked with a dot, bmin = 0.37931 and ζmin0 = 0.41966.

Figure 5.9: Energy (joules) versus ζ0 versus b for ζd = 2.2. No equilibria present.
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Figure 5.10: Energy (joules) versus ζ0 versus b for ζd = ζi = 2.2427. Incipient unstable
equilibrium marked with a dot, bmin = 0.65517 and ζmin0 = 0.62448..

terial solved with the shooting method in Section 5.1 is seen to improve in passing from
the one- to the two-degree-of-freedom model. Given the high accuracy achieved with these
simple representations, it is believed that a more refined finite-element representation is re-
dundant for the problem considered. The results of the analysis confirm the earlier conjecture
in Section 5.1 that a limit-point instability is encountered when the dipole source and the
membrane are in close proximity.

5.3 Finite Element Method

This section has previously been published in [4], also note that we performed a more
detailed analysis of the Finite Element Method (FEM) presented here in [5]. The FEM is
based on a coupling of the full 3D equations of dynamic elasticity coupled with low-frequency
(eddy current approximation) electromagnetics. The elastic equations are solved using the
standard Galerkin method with linear nodal basis functions and implicit Hilber-Hughes-
Taylor integration [16]. This integration method applies a controlled amount of damping to
high-frequency oscillations, which aids convergence to steady-state deformation. The mag-
netic equations are solved using an H(curl)-conforming Galerkin method with implicit time
integration [30]. The elastic equations and the magnetic equations are coupled using an
operator-splitting approach. The software is based on an existing magnetohydrodynamics
code [31], with the addition of the hyperelastic Mooney-Rivlin model for the stress-strain
relationship. The computational mesh includes the film and a region of vacuum surrounding
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the film. In the film, the mesh moves with the material (pure Lagrangian) but in the vacuum
around the film, the mesh is allowed to relax, Arbitrary Eularian Legrangian (ALE). This
ALE relaxation prevents the mesh from becoming highly distorted for large film displace-
ments.

A steel ring with a prescribed current is located above the membrane to create a magnetic
field similar to a magnetic dipole. The distance between the midplane of the film and the
midplane of the ring is zd, see Figure 5.1 for a schematic of the problem. To minimize the
size of the problem, the axisymmetry of the system is used to mesh only a quarter of a
revolution around the axis of symmetry and impose a symmetry boundary condition on the
x = 0 and y = 0 planes. We also take advantage of the fact that the magnetic field produced
above and below the center of the current carrying ring is symmetric, at the z = 2zd plane.
Thus, we only mesh the region below the center of the current carrying ring. See Figures
5.11 and 5.12 for the FEM layout and material regions.

The magnetic boundary conditions are as follows: on the ends of the current carrying
ring at y = 0, the normal component of the current density is set to J , and on the other
end of the wire at x = 0, the normal component of the current density is set to −J ; on all
other free surfaces, the normal component of the current density is set to zero; on the top
of the mesh (symmetry plane at z = 2zd), the tangential component of the magnetic field is
set to zero; on all other faces, the tangential electric field is set to zero, thus insuring that
the normal component of the magnetic field is zero.

On all free surfaces that are not symmetry planes, the displacement is constrained. The
displacement on the edge of the film that is not on a symmetry plane is also constrained.
The entire edge of the film is not constrained since this would impose zero slope as well as
the desired zero displacement. To get a better comparison to the shooting method discussed
in Section 5.1, only the nodes on the midplane are constrained. This constraint allows for
rotation at the edge of the film while maintaining zero displacement of the midplane at the
edge.

The elastic response of the film is modeled using the Mooney-Rivlin strain-energy function
see equation 5.12. Since the current carrying loop does not produce an exact magnetic
dipole field, an equivalent dipole strength (Deq) for comparison of the two methods needs
to be calculated. The ALE finite-element code is initially run in static mode (no motion)
to determine the steady-state magnetic field. An equivalent dipole strength is calculated
for each element between 0 ≤ r ≤ ra and (zd + h/2) ≤ z ≤ 7zd/5. The equivalent dipole
strength is calculated based on the z-component of the magnetic field (hzFE), since it is
much larger than the radial component. The average of these values is used to calculate the
equivalent dipole strength. The equivalent dipole strength is determined by taking the dot
product of 2.35 with k, and setting it equal to the axial component of the of the magnetic
field produced in the finite-element code (hzFE) resulting in:

hzFE = Deq
2(zc − zd)2 − r2

c

`5
(5.58)
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Figure 5.11: Top view of FEM material regions (air is white, steel is black, and film is gray).
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Figure 5.12: Side view of FEM material regions (air is white, steel is black, and film is gray)
and the region allowed to advect is inside the dashed line.

and when solved for the equivalent dipole strength

Deq =
hzFE`

5

2(zc − zd)2 − r2
c

(5.59)

where zc is the height of the center of the element above the midpane of the film; and rc is
the radial position of the center of the element away from the axis of symmetry. It should be
noted that the relationship between the equivalent dipole strength and the current density
is linear. Thus, once the equivalent dipole strength is calculated for one current density, the
equivalent dipole strength for any other current density can easily be calculated.

Once the equivalent magnetic field is determined, the finite-element code is used in the
dynamic mode. In order to avoid an undesirable shock to the film, the magnitude of the
current is slowly ramped up to the final value. Results for the FEM are for films with the
following properties and dimensions: radius of the film (ra) of 0.317 cm film shear modulus
(G) of 0.25 MPa; Mooney-Rivlin parameter δ of 0.9; magnetic susceptibility (χ̄) of 2.5; dipole
height zd of 0.5 cm; a variety of film thickness and dipole strengths(D).

When the magnetic field of the FEM model is compared to that of a dipole, for ele-
ments used to calculate the equivalent dipole strength, the average error in the radial and
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axial direction are 3.3% and 1.7%, respectively. This is quite good considering the different
approximations used.

Figure 5.13 shows the full 3D equilibrium deformation and magnetic field at an equiv-
alent dipole strength of 0.00544 Am2 for the region allowed to advect. Figure 5.14 shows
slices of the equilibrium position of the film from the FEM at various dipole strengths. If
the equivalent magnetic dipole strength of the FEM model is increased above 0.0059 Am2,
for a film thickness of 70 µm, the FEM model becomes unstable (dynamic) and no static
equilibrium is attained. This is consistent with the instability postulated in Section 5.1 and
examined in Section 5.2.

Two comparisons are made between the shooting method and FEM. Figure 5.15 has a
comparison of the midplane deformation for a variety of dipole strengths. It is seen that
the deformations for the two methods are very similar, validating the both methods. Figure
5.16 has a comparison of the midplane displacement at the center of the film for a variety of
dipole strengths. The two models agree well for the stable equilibria. We have also plotted
unstable equilibria predicted by the shooting method (z0 > 0.15cm); the steady state FEM
model does not find these solutions because the membrane goes dynamic.

Comparisons of the midplane displacement at the center of the film were also made for
varying film thickness for a variety of small equivalent dipole strengths; see Figure 5.17. It
is seen that as the thickness of the film in the FEM decreases, it approaches the membrane
model as expected.

The agreement of the results from the FEM and shooting models provides validation for
both the membrane model solved by the shooting method and the FEM model.
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Figure 5.13: Deformed film and magnetic field (orange vectors) for the FEM model at
Deq = 0.00544Am2
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(a) Deq = 0.00078Am2 (b) Deq = 0.00233Am2

(c) Deq = 0.00388Am2 (d) Deq = 0.00544Am2

Figure 5.14: 2D cross section of displacement for the FEM model.
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Figure 5.15: Comparison of displacement, shooting method vs. FEM. The black curves are
the shooting method results and the blue curves are the FEM results for a film thickness of
h = 70µm.
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Figure 5.16: Comparison of the z-displacement at the center of the film for the two methods
as a function of dipole strength. This particular FEM result used a film thickness of h =
70µm.

Figure 5.17: Comparison of the FEM results, with different film thicknesses, to the shooting
method.
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5.4 Finite Difference Method

To test our finite difference method before applying it the a more complicated material
model described in Chapter 6, we will apply it to the weakly magnetized material model and
compare the results to the shooting method described in Section 5.1.

We will follow the procedure in Chapter 4 to solve for the equilibrium position of the
deformed film by solving 4.15 (cf. 3.81) with ∆p = 0. We discretize the circular reference
mid-plane (Ω) using the ”butterfly” mesh described in Chapter 4

We first need to solve for the in plane stress (P1) at zone centered points. Solving for the
2D in-plain deformation gradient at each zone-centered point with equation 4.13 and then
solve for the in-plane right Cauchy Green tensor at zone-centered points:

c = f tf (5.60)

We solve the eigenvalue problem of this tensor where the eigenvectors are the reference
principal directions (uα) and the eigenvalues are the square of the principal stretch (λα),
thus

λ2
1 =

tr(c) + {[tr(c)]2 − 4det(c)}
2

1
2

(5.61)

λ2
2 =

tr(c)− {[tr(c)]2 − 4det(c)}
2

1
2

(5.62)

uα =



1{
1 +

(
c11 − λ2

α

c12

)} 1
2

1{
1 +

(
c12

c11 − λ2
α

)} 1
2


(5.63)

From this the current principal stretch directions are calculated

vα = fuα (5.64)

These principle stretches and directions are used in equation 5.19 to determine the stress
at zone centered points. We then solve for the divergence of the stress at the nodes cen-
tered points with 4.2 and 4.4 depending on the nearest neighbors. The calculation of Rk is
simplified as the (gradha)ki and mi = fiαMα can be solved for directly thus, equation 4.83

is:

Rk =
H

(`i,j)6
{((`i,j)(ai,j) · k)k− [1 + 4((ai,j) · k)2]((`i,j)(ai,j)} (5.65)

where ` and a are solved for from the current position with equation 2.36.
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Thus we use equation 4.19 to find the velocity of each node for the first time step then
equation 4.171 for further time steps and then equation 4.172 to solve for the new deformed
position. We then move forward in time until the deformation has reached equilibrium.
Once the maximum norm for all nodes is below a defined tolerance 4.20 we stop advancing
in time and declare the deformed position the equilibrium position. We also check that
the maximum velocity is approaching zero and that the maximum z-displacement reaches a
constant.

5.4.1 Results

Results for the finite difference method are for films with the following properties and
dimensions: radius of the film (ra) of 0.317 cm; film shear modulus (G) of 0.25 MPa; Mooney-
Rivlin parameter δ of 0.9; magnetic susceptibility (χ) of 2.5; film thickness (h) of 70 µm;
dipole height zd of 0.5 cm; and a variety dipole strengths(D).

A mesh refinement study is performed, the four finest meshes considered are shown in Fig-
ure 5.18. The mesh refinement study is performed at a dipole strength of D = 0.00466Am2

and using the relation between the two ”butterfly” mesh quantities Nr = (Nc − 1)/4. The
z-displacement is compared for each mesh, see Figure 5.19. It is seen that a mesh of Nc = 129
and Nc = 65 produce center displacements that are 0.017% different. All further results will
be for a mesh size of Nc = 65 and Nr = 16.

To check to make sure a small enough norm tolerance (tol) is used we look at the ve-
locity and center z-displacement of the film over ”time” to make sure that the velocity is
approaching zero and the z-displacement is approaching a constant. See Figures 5.20 and
5.21 for these plots.

Figure 5.22 shows the 3D deformation for a dipole strength of D = 0.00466Am2. Where
Figure 5.23 shows the axisymmetric deformation at x=0 for a variety of dipole strengths, no
comparison to the shooting method is made as the displacement curves fall directly on top of
each other and no difference can be seen. Figure 5.24 shows a comparison of the films center
z-displacement for the shooting method and finite difference method. It is seen that the
both methods agree, thus validating the deformation portion of the finite difference method
with dynamic relaxation.
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(a) Nc = 17 and Nr = 4 (b) Nc = 33 and Nr = 8

(c) Nc = 65 and Nr = 16 (d) Nc = 129 and Nr = 32

Figure 5.18: ”Butterfly” meshes considered
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Figure 5.19: Mesh Refinement study at D = 0.00466Am2

Figure 5.20: Maximum nodal artificial velocity vs artificial time for D = 0.00466Am2.
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Figure 5.21: Film center height displacement vs. artificial time for D = 0.00466Am2.
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Figure 5.22: 3D deformation of film using finite difference for Nc = 64 and D = 0.00466Am2.
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Figure 5.23: Cross-sectional deformation for a variety of dipole strengths for the finite dif-
ference method.

Figure 5.24: Comparison of the z-displacement at the center of the film for the membrane
model solved with the shooting method (Shoot) and finite difference (FD).
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Chapter 6

Magnetoelastic Strain-Energy
Function

In this chapter we use the material model proposed by Kankanala & Triantafyllidis in [20],
where here the magnetization and mechanical stress are closely coupled and is an extension
of the classical Mooney-Rivlin. We apply this material model to the finite difference method
developed in Chapter 4 to solve for equilibrium based on the membrane model of Chapter 3.
This material model, in the form of Section 2.6, is defined with the strain-energy function
by [20]

U =
G

2

{[
C10 + C11

J1

(M̄s)2

]
(I1 − 3) +

[
C20 + C21

J1

(M̄s)2

]
(I2 − 3)

+C01
J1

(M̄s)2
+ C02

J1

(M̄s)2
+ C∗01

[
cosh

(
J1

(M̄s)2

)
− 1

]}
(6.1)

where
J1 = I5 − I1I4 + I2I6 and J2 = I6 (6.2)

in which det F = 1 has been imposed. Here G is the ground-state shear modulus, M̄s is the
saturation value of magnetization per unit volume, and the Cij are dimensionless constants.
Numerical values of G, Cij and µ0M̄s are given in Table 2 of [20] and [21] , where µ0 is
the free-space permeability. The symbols J1,2 are used in [20] to denote invariants based on
magnetization per unit mass. These are recovered on dividing our invariants by ρ2

κ, and 6.1
takes this adjustment into account. Further, we have used 2.1242 and 2.128 to express the
invariants adopted in [20], here based on magnetization per unit volume, in terms of the Ik.
In [20] it is claimed that 6.1 satisfies 2.1161 without qualification. This comports with the
fact that the standard Mooney-Rivlin model satisfies the purely mechanical strong ellipticity
condition at all deformations [27]. Inequality 2.1162 was also shown in [20] to be satisfied
over a substantial range of strain.
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6.1 Results

In this section we discuss the results of some numerical experiments. All examples pertain
to a membrane with a thickness h = 50×10−3mm. This is used in place of ε in the formula 3.43
for the self field, which was derived using a scheme where ε is interpreted as (dimensionless)
thickness. The mass density is ρ = 1750 kg/m3; the free-space permeability is µ0 = 4π ×
10−7 N/A2 [23]; and the dipole source is centrally located above the plane at yd = (8
mm)k. Material parameters are taken to be those suggested in [21]. Thus, the saturation
magnetization is M̄s = µ0/2, the shear modulus is µ = 1.0 × 106 N/m2, and the remaining
parameters in 6.1 are C10 = 1.0, C20 = 0.625, C11 = 0.0791, C21 = 0.0, C01 = β/6 and
C02 = β/2, where β = µ0M̄

2
s /2.

6.1.1 Square Geometry

The first referential geometry we look at is a square, with each side being 8.0 mm.
In order to see if the number of nodes used in simulations is large enough to capture the
actual equilibrium deformation, a refinement study was performed for a dipole of strength
D = 160 × 10−6 Am2 where the center displacement of the membranes is compared, see
Figure 6.1. Where the number of nodes in the x and y direction (N) is increased the center

Figure 6.1: Square membrane center displacement for a variety of meshes defined by N for
D = 160× 10−6Am2 and zero pressure.

displacement asymptotically approaches a constant value. At N = 33 the results produce
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a 0.0274% error when the most refined simulation (N = 129) is assumed to be the exact
solution. All further simulations of the square membrane will be performed with N = 33.

In order to validate that the choice of tol in 4.20 is small enough, we look at the speed and
maximum displacement of all nodes as time progresses to see if the simulations are reaching
steady state. See Figure 6.2 and 6.3 for the maximum nodal displacement and speed versus

Figure 6.2: Maximum nodal z-displacement for D = 160×10−6Am2 for a square membrane.

time associated with the dynamic relaxation, respectively. As time progresses the maximum
nodal displacement approaches a constant and the speed approaches zero. Thus we conclude
that the tol was small enough and that an equilibrium was reached.

Figure 6.4 depicts the deformation of the membrane under zero pressure in response to
a dipole of strength D = 160 × 10−6 Am2 (cf. 2.35). The vertical and in-plane dimensions
are scaled differently to aid in visualization.

We have used the data generated by the simulation, together with 3.13, to verify that
the three-dimensional principal stretches of the membrane surface are well within the limits
required for the validity of 2.1162. The referential in-plane magnetization field M is shown
in Figure 6.5. This field is consistently directed toward the center of the membrane, where
differentiability requires that it diminish its intensity to zero. With this observation of the
in-plane magnetization, the constraint 3.35 causes the interaction with the applied field to
weaken near the center, resulting in a deformed surface that is relatively flat under the dipole
source.

Figure 6.6 shows the variation of the in-plane part, e, of the director field with respect to
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Figure 6.3: Maximum nodal velocity for D = 160× 10−6Am2 for a square membrane.

position on the reference plane. The deformation deviates from Kirchhoff-Love kinematics
wherever this is nonzero. This reflects the bias induced by the dipole source at points lying
off the dipole axis, causing the director d on the deformed surface to tilt relative to the
tangent plane as the membrane adjusts to the applied field. The effect diminishes near the
corners of the membrane where the field is relatively weak, and near the center where the
field lines intersect the membrane orthogonally and the associated bias vanishes; in either
case the kinematics revert to the Kirchhoff-Love mode.

Figure 6.7 shows the current magnetization (m) on the deformed membrane where 2.104
is used to push the referential magnetization forward.

Figure 6.8 illustrates the self field generated by the membrane, computed post facto using
equation 3.43, in a plane of symmetry obtained by fixing a reference coordinate at the value
zero. Figure 6.9 illustrates the self field above the deformed membrane.

In order to see how the deformation changes as the dipole strength is changed we look
at cross sections of the displacement for a variety of dipole strengths. Figures 6.10 and 6.11
show the cross section deformation at u2 = 0.0 and u1 = u2, respectively.

Next the effect of uniform pre-stretch of 1.2 is induced by an outward displacement of
nodes on the boundary; these are subsequently fixed in the course of the simulation. Cross
sections of the displacement with pre-stretch for a variety of dipole strengths are shown in
Figures 6.10 and 6.11 for cross sections u2 = 0.0 and u1 = u2, respectively.

The equilibrium deformation effect of pressure (no pre-stretch) at a fixed inflation pressure
P = 6.0× 105 Pa acting on the interior of the membrane; the external pressure is assumed
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Figure 6.4: Deformed square membrane for D = 160× 10−6Am2.
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Figure 6.5: Reference magnetization (M) for D = 160 × 10−6Am2 on the reference square
membrane.

Figure 6.6: In-plane part, e, of director field, at D = 160×10−6Am2 for a square membrane.
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Figure 6.7: Current magnetization (m) for D = 160 × 10−6Am2 on the deformed square
membrane.
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Figure 6.8: Self field in space at D = 160 × 10−6Am2, in the plane defined by u2 = 0 for a
square membrane.

Figure 6.9: Self field in space at D = 160 × 10−6Am2, in the plane defined by z = 3.0mm
for a square membrane.
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Figure 6.10: Equilibrium displacement of a square membrane for a cross section (at u2 = 0)
for a variety of dipole strengths, where the values of D given in the figure are multiplied by
×10−6Am2.

Figure 6.11: Equilibrium displacement of a square membrane for a cross section (at u1 = u2)
for a variety of dipole strengths, where the values of D given in the figure are multiplied by
×10−6Am2.
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Figure 6.12: Equilibrium displacement of a square membrane for a cross section (at u2 = 0)
for a variety of dipole strengths with a pre-stretch of 1.2, where the values of D given in the
figure are multiplied by ×10−6Am2.

to vanish. This is regarded as being supplied by a large reservoir with an opening on the
reference plane. Cross sectional deformations are illustrated in Figures 6.14 and 6.15 for
cross sections u2 = 0.0 and u1 = u2, respectively.

Next a volume-dependent pressure in which the product of the pressure and the enclosed
volume remains constant, as in an ideal gas at fixed temperature, is examined. The constant
is derived by using 3.74 to compute the contained volume generated in response to the fixed
pressure at zero field strength. The new pressure is:

P =
P0V0

V
(6.3)

where V is the current volume and P0 and V0 are the pressure and volume at zero field
strength, respectively. Cross sections of the deformation are illustrated in Figures 6.16 and
6.17 for cross sections u2 = 0.0 and u1 = u2, respectively.

Finally, the effects of pre-stretch and pressure are compared in Figure 6.18, in which
the height of the deformed surface, at a point on the dipole axis, is plotted against dipole
strength. The open circles and crosses correspond to zero applied pressure; the former
corresponding to no pre-stretch and the latter to a uniform pre-stretch of 1.2 induced by
an outward displacement of nodes on the boundary; these are subsequently fixed in the
course of the simulation. Pre-stretch stiffens the membrane dramatically, resulting in a
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Figure 6.13: Equilibrium displacement of a square membrane for a cross section (at u1 = u2)
for a variety of dipole strengths with a pre-stretch of 1.2, where the values of D given in the
figure are multiplied by ×10−6Am2.

Figure 6.14: Equilibrium displacement of a square membrane for a cross section (at u2 = 0)
for a variety of dipole strengths subjected to a constant pressure, where the values of D
given in the figure are multiplied by ×10−6Am2.
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Figure 6.15: Equilibrium displacement of a square membrane for a cross section (at u1 = u2)
for a variety of dipole strengths subjected to a constant pressure, where the values of D
given in the figure are multiplied by ×10−6Am2.

Figure 6.16: Equilibrium displacement of a square membrane for a cross section (at u2 = 0)
for a variety of dipole strengths with a pressure dependent on the volume, where the values
of D given in the figure are multiplied by ×10−6Am2.
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Figure 6.17: Equilibrium displacement of a square membrane for a cross section (at u1 = u2)
for a variety of dipole strengths with a pressure dependent on the volume, where the values
of D given in the figure are multiplied by ×10−6Am2.

Figure 6.18: Membrane displacement under the dipole source, as a function of dipole
strength. Effect of pre-stretch indicated by circles (◦) and crosses (×); effect of fixed or
volume dependent pressure is indicated by dots (·) and stars (*), respectively (see text).
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much smaller deflection at any given field strength. The effect of pressure (at no pre-stretch)
is illustrated by the dotted and starred data, the former corresponding to a fixed inflation
pressure P = 6.0 × 105 Pa acting on the interior of the membrane; the external pressure
is assumed to vanish. The stars correspond to a volume-dependent pressure. As expected,
pressure has a significant effect on deformation at small field intensities, but its relative
importance diminishes with increasing intensity. Moreover, at any value of field intensity
the volume-dependent pressure yields a smaller displacement than that produced by the
fixed pressure. The discrepancy increases with field intensity due to the attendant increase in
volume, which causes the volume-dependent pressure to be reduced in magnitude. In all cases
an upper limit is predicted for the deformation that can be maintained in equilibrium. Such
limits are identified by the failure of the dynamic relaxation method to generate equilibria
when the field intensity is increased above a critical value. Our results thus establish the
existence of a limit-point instability at sufficiently high field intensities. This corroborates
the analysis of Section 5.2, based on a low-order finite-dimensional projection of the model
developed in Section 5.1. For an example simulation with a dipole that does not have an
equilibrium deformation see Figure 6.19. and 6.20 It is seen that as time progresses the

.

Figure 6.19: Maximum nodal z-displacement for D = 170× 10−6Am2 versus time for square
membrane.

speed starts to approach zero but at around time=300 it starts to increase rapidly until the
simulation is stopped. For the maximum z displacement it starts to approach a constant
value but around time=300 it begins to rapidly increase. Together these results show that
the simulation does not have a stable equilibrium.



CHAPTER 6. MAGNETOELASTIC STRAIN-ENERGY FUNCTION 86

Figure 6.20: Maximum nodal velocity for D = 170× 10−6Am2 versus time for square mem-
brane.

So far we have only looked at membrane deformations where the dipole is placed above
the center of the membrane. We now look at deformations where the dipole is moved over
the edge of the membrane, in the x-direction. Figures 6.21 and 6.22 illustrates the same
deformation at a dipole strength of D = 240 × 10−6Am2 with the shifted dipole source.
A cross section for a dipole that has been shifted over the edge of the membrane is shown
in Figure 6.23 for u2 = 0.0. The ability to solve problems with a shifted dipole source is
possible due to the robustness of the finite difference method.
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Figure 6.21: Deformed square membrane for D = 240 × 10−6Am2 and dipole position of
yd = {4.0, 0.0, 8.0}mm.
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Figure 6.22: Deformed square membrane for D = 240 × 10−6Am2 and dipole position of
yd = {4.0, 0.0, 8.0}mm.
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Figure 6.23: Equilibrium displacement of a circular membrane for a cross section (at u2 = 0)
for a variety of dipole strengths with a dipole position of yd = {4.0, 0.0, 8.0}mm, where the
values of D given in the figure are multiplied by ×10−6Am2.



CHAPTER 6. MAGNETOELASTIC STRAIN-ENERGY FUNCTION 90

6.1.2 Circular Geometry

The second referential geometry we examine is circular , with a radius 4.0 mm. In
order to see if the number of nodes used in the simulations is large enough to capture the
actual equilibrium deformation a refinement study was performed for a dipole of strength
D = 200 × 10−6 Am2. The center displacement of the membranes is compared, see Figure
6.24. where the relation between the two ”butterfly” mesh quantities Nr = (Nc − 1)/4 is

Figure 6.24: Circular membrane center displacement for a variety of meshes for D = 180×
10−6Am2 and zero pressure.

enforced. It is seen that as the number of nodes (Nc) is increased the center displacement
asymptotically approaches a constant value. It is seen that Nc = 17 produces results with
0.6240% error when the most refined simulation (Nc = 129) is assumed to be the exact
solution. All further simulations will be performed with Nc = 17. Similar analysis for the
circular membrane was preformed to check that the tol of equation 4.20 as was done for the
square membrane.

Figure 6.25 depicts the deformation of the circular membrane under zero pressure in
response to a dipole of strength D = 200 × 10−6 Am2 (cf. 2.35). The vertical and in-plane
dimensions are scaled differently to aid in visualization.

Again we have used the data generated by the simulation, together with 3.13, to verify
that the three-dimensional principal stretches on the membrane surface are well within the
limits required for the validity of 2.1162. The referential in-plane magnetization field M is
shown in Figure 6.26. This field is consistently directed toward the center of the membrane,
where differentiability requires that its intensity diminish to zero. This and the constraint
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Figure 6.25: Deformed circular membrane for D = 200× 10−6Am2.
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Figure 6.26: Reference magnetization (M) for D = 200× 10−6Am2 on the reference circular
membrane.

3.35 cause the interaction with the applied field to weaken near the center, resulting in a
deformed surface that is relatively flat under the dipole source.

Figure 6.27 shows the variation of the in-plane part, e, of the director field with respect
to position on the reference plane. The deformation deviates from Kirchhoff-Love kinematics
wherever this is nonzero. This reflects the bias induced by the dipole source at points lying
off the dipole axis, causing the director d on the deformed surface to tilt relative to the
tangent plane as the membrane adjusts to the applied field. The effect diminishes near the
edge of the membrane where the field is relatively weak, and near the center where the field
lines intersect the membrane orthogonally and the associated bias vanishes; in either case
the kinematics revert to the Kirchhoff-Love mode.

Figure 6.28 shows the current magnetization (m) on the deformed membrane where 2.104
is used to push the referential magnetization forward.

In order to see how the deformation changes at different dipole strength we look at cross
sections of the displacement for a variety of dipole strengths. Figure 6.29 shows the cross
section deformation at u2 = 0.0.

Next the effect of uniform pre-stretch of 1.1 induced by an outward displacement of nodes
on the boundary; these are subsequently fixed in the course of the simulation. Cross sections
of the displacement with pre-stretch for a variety of dipole strengths are shown in Figure
6.30, which shows the cross section deformation at u2 = 0.0.

The equilibrium deformation effect of pressure (at no pre-stretch) at a fixed inflation
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Figure 6.27: Unknown portion of the director (e) for D = 160 × 10−6Am2 on the reference
circular membrane.

pressure P = 2.0× 105 Pa acting on the interior of the membrane; the external pressure is
assumed to vanish. This is regarded as being supplied by a large reservoir with an opening
on the reference plane. Cross sectional deformations are illustrated in Figure 6.31 showing
the cross section deformation at u2 = 0.0.

Next we examine a volume-dependent pressure in which the product of the pressure and
the enclosed volume remains constant. The constant is derived by using 3.74 to compute
the contained volume generated in response to the fixed pressure at zero field strength. The
new pressure is again determined by 6.3. Cross sections of the deformation are illustrated
in Figure 6.32 and show the cross section deformation at u2 = 0.0.

Finally, the effects of pre-stretch and pressure are compared in Figure 6.33, in which
the height of the deformed surface, at a point on the dipole axis, is plotted against dipole
strength. The open circles and crosses correspond to zero applied pressure; the former
corresponding to no pre-stretch and the latter to a uniform pre-stretch of 1.1 induced by an
outward displacement of nodes on the boundary; these are subsequently fixed in the course
of the simulation. Pre-stretch is seen to stiffen the membrane dramatically, resulting in a
much smaller deflection at any given field strength. The effect of pressure (at no pre-stretch)
is illustrated by the dotted and starred data, the former corresponding to a fixed inflation
pressure P = 2.0 × 105 Pa acting on the interior of the membrane; the external pressure
is assumed to vanish. The stars correspond to a volume-dependent pressure in which the
product of the pressure and the enclosed volume remains constant, as in an ideal gas at
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Figure 6.28: Current magnetization (m) for D = 200 × 10−6Am2 on the deformed circular
membrane.
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Figure 6.29: Equilibrium displacement of a circular membrane for a cross section (at u2 = 0)
for a variety of dipole strengths, where the values of D given in the figure are multiplied by
×10−6Am2.

fixed temperature. As expected, pressure has a significant effect on deformation at small
field intensities, but its relative importance diminishes with increasing intensity. Moreover,
at any value of field intensity the volume-dependent pressure yields a smaller displacement
than that produced by the fixed pressure. The discrepancy increases with field intensity
due to the attendant increase in volume, which causes the volume-dependent pressure to
be reduced in magnitude. In all cases an upper limit is predicted for the deformation that
can be maintained in equilibrium. Such limits are identified by the failure of the dynamic
relaxation method to generate equilibria when the field intensity is increased above a critical
value. Our results thus establish the existence of a limit-point instability at sufficiently high
field intensities. This corroborates the analysis of 5.2, based on a low-order finite-dimensional
projection of the model developed in Section 5.1.

We next examine deformations of the circular membrane where the dipole is moved, in
the x-direction, over the edge of the membrane. Figures 6.34 and 6.35 illustrate the same
deformation at a dipole strength of D = 300× 10−6Am2 with the shifted dipole source.

A cross section for a dipole that has been shifted over the edge of the membrane are
shown in Figure 6.36 for u2 = 0.0.
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Figure 6.30: Equilibrium displacement of a circular membrane for a cross section (at u2 = 0)
for a variety of dipole strengths with pre-stretch of 1.1, where the values of D given in the
figure are multiplied by ×10−6Am2.
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Figure 6.31: Equilibrium displacement of a circular membrane for a cross section (at u2 = 0)
for a variety of dipole strengths subjected to a constant pressure, where the values of D
given in the figure are multiplied by ×10−6Am2.
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Figure 6.32: Equilibrium displacement of a circular membrane for a cross section (at u2 = 0)
for a variety of dipole strengths with a pressure dependent on the volume, where the values
of D given in the figure are multiplied by ×10−6Am2.

Figure 6.33: Comparison of a circular membrane maximum z-displacement.
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Figure 6.34: Deformed circular membrane for D = 300 × 10−6Am2 and dipole position of
yd = {4.0, 0.0, 8.0}mm.
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Figure 6.35: Deformed circular membrane for D = 300 × 10−6Am2 and dipole position of
yd = {4.0, 0.0, 8.0}mm.
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Figure 6.36: Equilibrium displacement of a circular membrane for a cross section (at y = 0)
for a variety of dipole strengths with a dipole position of yd = {4.0, 0.0, 8.0}mm, where the
values of D given in the figure are multiplied by ×10−6Am2.
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Chapter 7

Conclusion

We have developed an approximate membrane theory from three-dimensional magnetoe-
lasticity for magnetizable materials that are highly deformable, synthesized from elastomers
infused with micro- or nano-scopic ferrous particles [19]. This approach is more systematic
than alternative formulations based, for example, on thickness-wise integration of the local
three-dimensional balance laws (e.g. [12]). It incorporates a constraint requiring the mag-
netization to remain tangential to the film as it deforms. This was motivated by the fact
such states are energetically optimal in thin films [11] and [34]. Likewise, we imposed the
constraint of bulk incompressibility, and thus excluded dilatational modes of deformation
that are energetically unfavorable in typical elastomers. However, unlike incompressibil-
ity, the constraint on magnetization is not of the kind that requires a reactive Lagrange
multiplier in the relevant constitutive equation. Rather, it is a restriction involving the
deformation, allowing local membrane geometry to adjust in response to an applied field.
The Kirchhoff-Love type constraints is not imposed at the outset as in many other theories
of thin magnetoelastic plates [41]. In general such constraints impede the attainment of
minima of the overall energy because, by confining our attention to states of magnetization
that are optimal at any deformation, we have effectively eliminated magnetization as an
independent variable. The bias induced by an applied field yields deformations that violate
constraints of the Kirchhoff-Love type. Here, this was addressed via a director field which
emerges naturally from the underlying three-dimensional theory in the manner described in
[36] for the purely mechanical problem, without restricting the nature of the deformation in
thin bodies.

We use a finite-difference method to discretize the model spatially and discuss the solution
of the resulting equations by the method of dynamic relaxation, in which equilibria are
obtained as long-time limits of solutions to an artificial dynamical system with viscosity. This
finite-difference method was expanded to better handle circular films, by the introduction of
a ”butterfly” mesh.

This model was then applied to simulate the interplay between an applied magnetic field,
modeled here as a remote dipole source, and the pressure transmitted to the membrane by
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a confined gas for the two types of material models.
First the weak material model was examined and we solved for the equilibrium defor-

mation using a shooting method (where we further simplify the problem to axisymmetric
deformations), finite element method and the finite-difference method. An instability was
inferred from the deformation response and then further investigated with a variational
method.

Second, the finite-difference method was applied to determine the deformation, magne-
tization and magnetic field generated by a thin film, using the Kankanala & Triantafyllidis
material model, in response to an applied magnetic field, pre-stretch, and pressure load.
Here it is seen that the The Kirchhoff-Love type constraints is violated. This is due to the
fact that, in genera case, magnetization and deformation are coupled in the expression for
the magnetoelastic strain-energy function.
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